OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8688–8696

Precise fluorophore lifetime mapping in live-cell, multi-photon excitation microscopy

Ching-Wei Chang and Mary-Ann Mycek  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 8688-8696 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1656 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fluorophore excited state lifetime is a useful indicator of micro-environment in cellular optical molecular imaging. For quantitative sensing, precise lifetime determination is important, yet is often difficult to accomplish when using the experimental conditions favored by live cells. Here we report the first application of temporal optimization and spatial denoising methods to two-photon time-correlated single photon counting (TCSPC) fluorescence lifetime imaging microscopy (FLIM) to improve lifetime precision in live-cell images. The results demonstrated a greater than five-fold improvement in lifetime precision. This approach minimizes the adverse effects of excitation light on live cells and should benefit FLIM applications to high content analysis and bioimage informatics.

© 2010 OSA

OCIS Codes
(100.2000) Image processing : Digital image processing
(170.1530) Medical optics and biotechnology : Cell analysis
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.6920) Medical optics and biotechnology : Time-resolved imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: February 19, 2010
Revised Manuscript: April 3, 2010
Manuscript Accepted: April 6, 2010
Published: April 9, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Ching-Wei Chang and Mary-Ann Mycek, "Precise fluorophore lifetime mapping in live-cell, multi-photon excitation microscopy," Opt. Express 18, 8688-8696 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. X. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005). [CrossRef] [PubMed]
  2. S. Pelet, M. J. R. Previte, D. Kim, K. H. Kim, T. T. J. Su, and P. T. C. So, “Frequency domain lifetime and spectral imaging microscopy,” Microsc. Res. Tech. 69(11), 861–874 (2006). [CrossRef] [PubMed]
  3. C. W. Chang, M. Wu, S. D. Merajver, and M. A. Mycek, “Physiological fluorescence lifetime imaging microscopy improves Förster resonance energy transfer detection in living cells,” J. Biomed. Opt. 14(6), 060502 (2009). [CrossRef]
  4. D. Sud and M. A. Mycek, “Calibration and validation of an optical sensor for intracellular oxygen measurements,” J. Biomed. Opt. 14(2), 020506 (2009). [CrossRef] [PubMed]
  5. D. Sud, W. Zhong, D. G. Beer, and M. A. Mycek, “Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models,” Opt. Express 14(10), 4412–4426 (2006). [CrossRef] [PubMed]
  6. C. W. Chang, D. Sud, and M. A. Mycek, “Fluorescence lifetime imaging microscopy,” Methods Cell Biol. 81, 495–524 (2007). [CrossRef] [PubMed]
  7. J. Low, S. Huang, W. Blosser, M. Dowless, J. Burch, B. Neubauer, and L. Stancato, “High-content imaging characterization of cell cycle therapeutics through in vitro and in vivo subpopulation analysis,” Mol. Cancer Ther. 7(8), 2455–2463 (2008). [CrossRef] [PubMed]
  8. P. Vallotton, R. Lagerstrom, C. Sun, M. Buckley, D. D. Wang, M. De Silva, S. S. Tan, and J. A. Gunnersen, “Automated analysis of neurite branching in cultured cortical neurons using HCA-Vision,” Cytometry A 71A(10), 889–895 (2007). [CrossRef]
  9. C. Antczak, T. Takagi, C. N. Ramirez, C. Radu, and H. Djaballah, “Live-cell imaging of caspase activation for high-content screening,” J. Biomol. Screen. 14(8), 956–969 (2009). [CrossRef] [PubMed]
  10. C. B. Talbot, J. McGinty, D. M. Grant, E. J. McGhee, D. M. Owen, W. Zhang, T. D. Bunney, I. Munro, B. Isherwood, R. Eagle, A. Hargreaves, C. Dunsby, M. A. A. Neil, and P. M. W. French, “High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis,” J. Biophotonics 1(6), 514–521 (2008). [CrossRef]
  11. J. R. Swedlow, I. G. Goldberg, K. W. Eliceiri, and OME Consortium, “Bioimage informatics for experimental biology,” Annu. Rev. Biophys. 38(1), 327–346 (2009). [CrossRef] [PubMed]
  12. C. Vonesch, “Fast and automated wavelet-regularized image restoration in fluorescence microscopy,” Ph.D. thesis, École Polytechnique Fédérale De Lausanne (2009).
  13. C. Buranachai, D. Kamiyama, A. Chiba, B. D. Williams, and R. M. Clegg, “Rapid frequency-domain FLIM spinning disk confocal microscope: lifetime resolution, image improvement and wavelet analysis,” J. Fluoresc. 18(5), 929–942 (2008). [CrossRef] [PubMed]
  14. B. Q. Spring and R. M. Clegg, “Image analysis for denoising full-field frequency-domain fluorescence lifetime images,” J. Microsc. (Oxford) 235(2), 221–237 (2009). [CrossRef]
  15. J. Boulanger, J. B. Sibarita, C. Kervrann, and P. Bouthemy, “Non-parametric regression for patch-based fluorescence microscopy image sequence denoising,” 2008 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Vols 1–4, 748–751 (2008).
  16. S. Delpretti, F. Luisier, S. Ramani, T. Blu, and M. Unser, “Multiframe SURE-LET denoising of timelapse fluorescence microscopy images,” 2008 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Vols 1–4, 149–152 (2008).
  17. S. Osher, M. Burger, D. Goldfarb, J. J. Xu, and W. T. Yin, “An iterative regularization method for total variation-based image restoration,” Multiscale Model. Simul. 4(2), 460–489 (2005). [CrossRef]
  18. E. Tadmor, S. Nezzar, and L. Vese, “A multiscale image representation using hierarchical (BV, L2) decompositions,” Multiscale Model. Simul. 2(4), 554–579 (2004). [CrossRef]
  19. N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, “Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution,” Microsc. Res. Tech. 69(4), 260–266 (2006). [CrossRef] [PubMed]
  20. C. N. Wu, Y. Cheng, M. L. Liu, and Y. Jin, “Measurement of axisymmetric two-phase flows by an improved x-ray-computed tomography technique,” Ind. Eng. Chem. Res. 47(6), 2063–2074 (2008). [CrossRef]
  21. J. Tohka and A. Reilhac, “Deconvolution-based partial volume correction in Raclopride-PET and Monte Carlo comparison to MR-based method,” Neuroimage 39(4), 1570–1584 (2008). [CrossRef]
  22. A. Sofou and P. Maragos, “Generalized flooding and Multicue PDE-based image segmentation,” IEEE Trans. Image Process. 17(3), 364–376 (2008). [CrossRef] [PubMed]
  23. B. Nilsson, M. Johansson, A. Heyden, S. Nelander, and T. Fioretos, “An improved method for detecting and delineating genomic regions with altered gene expression in cancer,” Genome Biol. 9(1), R13 (2008). [CrossRef] [PubMed]
  24. C. W. Chang, “Improving Accuracy and Precision in Biological Applications of Fluorescence Lifetime Imaging Microscopy,” Ph.D. thesis, University of Michigan (2009).
  25. C. W. Chang and M. A. Mycek, “Improving precision in time-gated FLIM for low-light live-cell imaging,” Proc. SPIE 7370, 7370091–7370096 (2009).
  26. C. W. Chang and M. A. Mycek, “Increasing precision of lifetime determination in fluorescence lifetime imaging,” Proc. SPIE 7570, 757007 (2010). [CrossRef]
  27. H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, and W. G. J. H. M. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. (Oxford) 206(3), 218–224 (2002). [CrossRef]
  28. I. Bugiel, K. König, and H. Wabnitz, “Investigation of cell by fluorescence laser scanning microscopy with subnanosecond time resolution,” Lasers Life Sci. 3, 47–53 (1989).
  29. X. F. Wang, T. Uchida, D. M. Coleman, and S. Minami, “A two-dimensional fluorescence lifetime imaging system using a gated image intensifier,” Appl. Spectrosc. 45(3), 360–366 (1991). [CrossRef]
  30. K. K. Sharman, A. Periasamy, H. Ashworth, J. N. Demas, and N. H. Snow, “Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes,” Anal. Chem. 71(5), 947–952 (1999). [CrossRef] [PubMed]
  31. T. Le, R. Chartrand, and T. J. Asaki, “A variational approach to reconstructing images corrupted by poisson noise,” J. Math. Imaging Vis. 27(3), 257–263 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 4 Fig. 2
Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited