OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8697–8704

Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams

Uladzimir A. Hrozhyk, Svetlana V. Serak, Nelson V. Tabiryan, Landa Hoke, Diane M. Steeves, and Brian R. Kimball  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 8697-8704 (2010)
http://dx.doi.org/10.1364/OE.18.008697


View Full Text Article

Enhanced HTML    Acrobat PDF (1343 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study compares optical switching capabilities of liquid crystal (LC) materials based on different classes of azobenzene dyes. LCs based on molecules containing benzene rings with nearly symmetrical π-π conjugation respond more efficiently to a cw beam than to a nanosecond laser pulse and maintain the changes induced by the beam for tens of hours. Using azo dye molecules containing two benzene rings with push-pull π-π conjugation we demonstrate high photosensitivity to both a cw beam as well as nanosecond laser pulse with only 1 s relaxation of light-induced changes in material properties. Even faster, 1 ms restoration time is obtained for azo dye molecules containing hetaryl (benzothiazole) ring with enhanced push-pull π-π conjugation. These materials respond most efficiently to pulsed excitation while discriminating cw radiation.

© 2010 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(160.3710) Materials : Liquid crystals
(160.4890) Materials : Organic materials
(190.0190) Nonlinear optics : Nonlinear optics
(260.5130) Physical optics : Photochemistry

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 23, 2010
Revised Manuscript: March 22, 2010
Manuscript Accepted: March 28, 2010
Published: April 9, 2010

Citation
Uladzimir A. Hrozhyk, Svetlana V. Serak, Nelson V. Tabiryan, Landa Hoke, Diane M. Steeves, and Brian R. Kimball, "Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams," Opt. Express 18, 8697-8704 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-8697


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zeldovich, “The orientational optical nonlinearity of liquid crystals,” Mol. Cryst. Liquid Cryst. (Phila. Pa.) 136(1), 1–140 (1986). [CrossRef]
  2. S. Yamashita, H. Ono, and O. Toyama, “The cis-trans photoisomerization of azobenzene,” Bull. Chem. Soc. Jpn. 35(11), 1849–1853 (1962). [CrossRef]
  3. J. Wachtveitl, T. Nagele, B. Puell, W. Zinth, M. Kruger, S. Rudolph-Bohner, D. Oesterhelt, and L. Moroder, “Ultrafast photoisomerization of azobenzene compounds,” J. Photochem. Photobiol. Chem. 105(2-3), 283–288 (1997). [CrossRef]
  4. C. M. Stuart, R. R. Frontiera, and R. A. Mathies, “Excited-state structure and dynamics of cis- and trans-Azobenzene from resonance Raman intensity analysis,” J. Phys. Chem. A 111(48), 12072–12080 (2007). [CrossRef] [PubMed]
  5. H. Rau, “Photoisomerization of azobenzenes,” in Photochemistry and Photophysics, J. F. Rabek, ed. (CRC Press, Boca Raton, 1990), pp. 119–141.
  6. O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. 1(18), 4219–4224 (1999). [CrossRef]
  7. A. A. Kovalev, G. L. Nekrasov, Yu. A. Razvin, V. A. Grozhik, and S. V. Serak, “Optical recording of the information in liquid crystals,” in Optical Methods of Information Processing, V. A. Pilipovich, ed. (Nauka i Technika, Minsk, 1978), pp. 21–35 (in Russian).
  8. T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science 268(5219), 1873–1875 (1995). [CrossRef] [PubMed]
  9. U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, “Wide temperature range azobenzene nematic and smectic LC materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454(1), 235–246 (2006), www.beamco.com . [CrossRef]
  10. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor–acceptor azobenzene mesogenic structures,” Mol. Cryst. Liquid Cryst. (Phila. Pa.) 489, 257–272 (2008).
  11. N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett. 93(11), 113901-1–4 (2004). [CrossRef] [PubMed]
  12. N. V. Tabiryan, U. A. Hrozhyk, H. L. Margaryan, M. J. Mora, S. R. Nersisyan, and S. V. Serak, “Nonlinear optical absorption and related phenomena in liquid crystals,” Mat. Res. Soc. Symp. Proc. 709, CC4.5.1–11 (2002).
  13. N. V. Tabiryan, S. V. Serak, and V. A. Grozhik, “Photoinduced critical opalescence and reversible all-optical switching in photosensitive liquid crystals,” J. Opt. Soc. Am. B 20(3), 538–544 (2003). [CrossRef]
  14. S. Serak, and N. Tabiryan, “Microwatt Power Optically Controlled Spatial Solitons in Azobenzene Liquid Crystals,” Proc. SPIE 6332, 63320Y1–Y13 (2006).
  15. U. Hrozhyk, S. Serak, N. Tabiryan, L. Hoke, D. M. Steeves, G. Kedziora, and B. Kimball, “High optical nonlinearity of azobenzene liquid crystals for short laser pulses,” Proc. SPIE 7050, 705007–1-11 (2008).
  16. F. Y. Kwong, A. Klapars, and S. L. Buchwald, “Copper-catalyzed coupling of alkylamines and aryl iodides: an efficient system even in an air atmosphere,” Org. Lett. 4(4), 581–584 (2002). [CrossRef] [PubMed]
  17. U. Hrozhyk, S. Serak, N. Tabiryan, D. Steeves, L. Hoke, and B. Kimball, “Azobenzene liquid crystals for fast reversible optical switching and enhanced sensitivity for visible wavelengths”, Proc. SPIE, 7414, 74140L–1-15 (2009).
  18. I. C. Khoo, M. V. Wood, M. Y. Shih, and P. H. Chen, “Extremely nonlinear photosensitive liquid crystals for image sensing and sensor protection,” Opt. Express 4(11), 432–442 (1999). [CrossRef] [PubMed]
  19. I. C. Khoo, M. Y. Shih, and A. Shishido, “Supra optical nonlinearities of photosensitive nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 364(1), 141–149 (2001). [CrossRef]
  20. L. Deng and H.-K. Liu, “Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films,” Opt. Eng. 42(10), 2936–2941 (2003). [CrossRef]
  21. R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4(2), 189–196 (1999). [CrossRef]
  22. L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17(4), 299–338 (1993). [CrossRef]
  23. Y.-P. Sun and J. E. Riggs, “Organic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18(1), 43–90 (1999). [CrossRef]
  24. A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically Switchable Bragg Reflectors,” Adv. Mater. 16(16), 1453–1456 (2004). [CrossRef]
  25. L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93(18), 181115 (2008). [CrossRef]
  26. L. De Sio, S. Serak, N. V. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 1–4 (2010). [CrossRef]
  27. N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The Promise of Diffractive Waveplates,” Opt. Photonics News 21, 41–45 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

Supplementary Material


» Media 1: MPG (3398 KB)     
» Media 2: MPG (3482 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited