OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8713–8721

Microscopic cascading of second-order molecular nonlinearity: new design principles for enhancing third-order nonlinearity

Alexander Baev, Jochen Autschbach, Robert W. Boyd, and Paras N. Prasad  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 8713-8721 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1334 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Herein, we develop a phenomenological model for microscopic cascading and substantiate it with ab initio calculations. It is shown that the concept of local microscopic cascading of a second-order nonlinearity can lead to a third-order nonlinearity, without introducing any new loss mechanisms that could limit the usefulness of our approach. This approach provides a new molecular design protocol, in which the current great successes achieved in producing molecules with extremely large second-order nonlinearity can be used in a supra molecular organization in a preferred orientation to generate very large third-order response magnitudes. The results of density functional calculations for a well-known second-order molecule, (para)nitroaniline, show that a head-to-tail dimer configuration exhibits enhanced third-order nonlinearity, in agreement with the phenomenological model which suggests that such an arrangement will produce cascading due to local field effects.

© 2010 OSA

OCIS Codes
(000.1570) General : Chemistry
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

ToC Category:
Nonlinear Optics

Original Manuscript: February 25, 2010
Manuscript Accepted: March 28, 2010
Published: April 9, 2010

Alexander Baev, Jochen Autschbach, Robert W. Boyd, and Paras N. Prasad, "Microscopic cascading of second-order molecular nonlinearity: new design principles for enhancing third-order nonlinearity," Opt. Express 18, 8713-8721 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Rustagi and J. Ducuing, “Third-order optical polarizability of conjugated organic molecules,” Opt. Commun. 10(3), 258–261 (1974). [CrossRef]
  2. A. Adronov, J. M. J. Fréchet, G. S. He, K.-S. Kim, S.-J. Chung, J. Swiatkiewicz, and P. N. Prasad, “Novel Two-Photon Absorbing Dendritic Structures,” Chem. Mater. 12(10), 2838–2841 (2000). [CrossRef]
  3. C. B. Gorman and S. R. Marder, “An investigation of the interrelationships between linear and nonlinear polarizabilities and bond-length alternation in conjugated organic molecules,” Proc. Natl. Acad. Sci. U.S.A. 90(23), 11297–11301 (1993). [CrossRef] [PubMed]
  4. I. Albert, T. J. Marks, and M. A. Ratner, “Rational design of molecules with large hyperpolarizabilities. electric field, solvent polarity, and bond length alternation effects on merocyanine dye linear and nonlinear optical properties,” J. Phys. Chem. 100(23), 9714–9725 (1996). [CrossRef]
  5. G. I. Stegeman, M. Sheik-Bahae, E. Van Stryland, and G. Assanto, “Large nonlinear phase shifts in second-order nonlinear-optical processes,” Opt. Lett. 18(1), 13–15 (1993). [CrossRef] [PubMed]
  6. J. H. Andrews, K. L. Kowalski, and K. D. Singer, “Pair correlations, cascading, and local-field effects in nonlinear optical susceptibilities,” Phys. Rev. A 46(7), 4172–4184 (1992). [CrossRef] [PubMed]
  7. K. Dolgaleva, H. Shin, and R. W. Boyd, “Observation of a microscopic cascaded contribution to the fifth-order nonlinear susceptibility,” Phys. Rev. Lett. 103(11), 113902 (2009). [CrossRef] [PubMed]
  8. B. Bedeaux and N. Bloembergen, “On the relation between microscopic and microscopic nonlinear susceptibilities,” Physica 69(1), 57–66 (1973). [CrossRef]
  9. K. Dolgaleva, R. W. Boyd, and J. E. Sipe, “Cascaded nonlinearity caused by local-field effects in the two-level atom,” Phys. Rev. A 76(6), 063806 (2007). [CrossRef]
  10. G. R. Meredith, “Cascading in optical third-harmonic generation by crystalline quartz,” Phys. Rev. B 24(10), 5522–5532 (1981). [CrossRef]
  11. Ch. Bosshard, R. Spreiter, M. Zgonik, and P. Günter, “Kerr nonlinearity via cascaded optical rectification and the linear electro-optic effect,” Phys. Rev. Lett. 74(14), 2816–2819 (1995). [CrossRef] [PubMed]
  12. Ch. Bosshard, “Cascading of second-order nonlinearities in polar materials,” Adv. Mater. 8(5), 385–397 (1996). [CrossRef]
  13. C. Kolleck, “Cascaded second-order contribution to the third-order nonlinear susceptibility,” Phys. Rev. A 69(5), 053812 (2004). [CrossRef]
  14. K. V. Mikkelsen, Y. Luo, H. Ågren, and P. Jørgensen, “Solvent induced polarizabilities and hyperpolarizabilities of para-nitroaniline studied by reaction field linear response theory,” J. Chem. Phys. 100, 8240 (1994). [CrossRef]
  15. A. Ye, S. Patchkovskii, and J. Autschbach, “Static and dynamic second hyperpolarizability calculated by time-dependent density functional cubic response theory with local contribution and natural bond orbital analysis,” J. Chem. Phys. 127(7), 074104 (2007). [CrossRef] [PubMed]
  16. A. Ye and J. Autschbach, “Study of static and dynamic first hyperpolarizabilities using time-dependent density functional quadratic response theory with local contribution and natural bond orbital analysis,” J. Chem. Phys. 125(23), 234101 (2006). [CrossRef] [PubMed]
  17. E. J. Baerends, J. Autschbach, A. Berces, F. M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, S. J. A. van Gisbergen, J. A. Groeneveld, O. V. Gritsenko, M. Gruning, F. E. Harris, P. van den Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, G. van Kessel, F. Kootstra, E. van Lenthe, D. A. McCormack, A. Michalak, J. Neugebauer, V. P. Osinga, S. Patchkovskii, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, P. Ros, P. R. T. Schipper, G. Schreckenbach, J. G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovlev, and T. Ziegler, Amsterdam Density Functional, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands.
  18. J. P. Perdew, K. Burke, and Y. Wang, “Generalized gradient approximation for the exchange-correlation hole of a many-electron system,” Phys. Rev. B 54(23), 16533–16539 (1996). [CrossRef]
  19. C. Adamo and V. Barone, “Toward reliable density functional methods without adjustable parameters: the PBE0 model,” J. Chem. Phys. 110(13), 6158 (1999). [CrossRef]
  20. D. Bryce and J. Autschbach, “Relativistic hybrid density functional calculations of indirect nuclear spin-spin coupling tensors. comparison with experiment for diatomic alkali metal halides,” Can. J. Chem. 87(7), 927–941 (2009). [CrossRef]
  21. B. Jansik, P. Salek, D. Jonsson, O. Vahtras, and H. Ågren, “Cubic response function in time-dependent density functional theory,” J. Chem. Phys. 122(5), 054107 (2005). [CrossRef]
  22. I. D. L. Albert, T. J. Marks, and M. A. Ratner, “Remarkable NLO response and infrared absorption in simple twisted molecular π-chromophores,” J. Am. Chem. Soc. 120, 11174 (1998). [CrossRef]
  23. J. Autschbach, “Charge-transfer excitations and time-dependent density functional theory: problems and some proposed solutions,” Chem. Phys. Chem. 10(11), 1757–1760 (2009). [CrossRef] [PubMed]
  24. S. Grimme and M. Parac, “Substantial errors from time-dependent density functional theory for the calculation of excited states of large pi systems,” ChemPhysChem 4(3), 292–295 (2003). [CrossRef] [PubMed]
  25. A. Dreuw and M. Head-Gordon, “Single-reference ab initio methods for the calculation of excited states of large molecules,” Chem. Rev. 105(11), 4009–4037 (2005). [CrossRef] [PubMed]
  26. F. Weinhold, ‘Natural bond orbital methods’. In Encyclopedia of computational chemistry, von Rague Schleyer, P., Ed. John Wiley & Sons: Chichester, 1998; pp 1792–1811.
  27. H. Ågren, J. Autschbach, A. Baev, M. Swihart, and P. N. Prasad, “Rational Design of Organo-Metallic Complexes for Enhanced Third-Order Nonlinearity,”manuscript in preparation.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited