OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8722–8734

Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips

Valeria Lotito, Urs Sennhauser, and Christian Hafner  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 8722-8734 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (4152 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new configuration for a fully metal coated scanning near field (SNOM) probe based on asymmetric corrugations in the metal coating. The variation in the metal surface induces coupling mechanisms leading to the creation of a localized hot spot under linearly polarized excitation. Field localization is an effect of paramount importance for resolution but cannot be achieved with standard axisymmetric fully metal-coated probes, unless a more cumbersome radially polarized excitation is used. Our simulations show that this promising structure allows one to simplify the mode injection procedures circumventing the need for a radially polarized beam.

© 2010 OSA

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(260.5430) Physical optics : Polarization
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: March 8, 2010
Revised Manuscript: March 31, 2010
Manuscript Accepted: April 6, 2010
Published: April 9, 2010

Valeria Lotito, Urs Sennhauser, and Christian Hafner, "Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips," Opt. Express 18, 8722-8734 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Hecht, B. Sick, U. Wild, V. Deckert, R. Zenobi, O. Martin, and D. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000). [CrossRef]
  2. L. Novotny, and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  3. L. Novotny, Progress in Optics, 50, (Elsevier, 2007), Chap. 5.
  4. D. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984). [CrossRef]
  5. A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13(3), 227–231 (1984). [CrossRef]
  6. L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994). [CrossRef] [PubMed]
  7. L. Liu and S. He, “Design of metal-cladded near-field fiber probes with a dispersive body-of-revolution finite-difference time-domain method,” Appl. Opt. 44(17), 3429–3437 (2005). [CrossRef] [PubMed]
  8. W. Nakagawa, L. Vaccaro, and H. P. Herzig, “Analysis of mode coupling due to spherical defects in ideal fully metal-coated scanning near-field optical microscopy probes,” J. Opt. Soc. Am. A 23(5), 1096–1105 (2006). [CrossRef]
  9. W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(063822), 10 (2007). [CrossRef]
  10. H. G. Frey, C. Bolwien, A. Brandenburg, R. Ros, and D. Anselmetti, “Optimized apertureless optical near-field probes with 15 nm optical resolution,” Nanotechnology 17(13), 3105–3110 (2006). [CrossRef]
  11. L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, and R. Dändliker, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83(3), 584–586 (2003). [CrossRef]
  12. E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, T. Scharf, and H. P. Herzig, “On the coupling and transmission of transverse and longitudinal fields into fully metal-coated optical nano-probes,” Proc. SPIE 5736, 96–104 (2005). [CrossRef]
  13. P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H. P. Herzig, and R. Dändliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy 107(2-3), 158–165 (2007). [CrossRef]
  14. N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005). [CrossRef]
  15. W. Chen and Q. Zhan, “Field enhancement analysis of an apertureless near field scanning optical microscope probe with finite element method,” Chin. Opt. Lett. 5, 709–711 (2007).
  16. W. Chen and Q. Zhan, “Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination,” Opt. Express 15(7), 4106–4111 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-7-4106 . [CrossRef] [PubMed]
  17. A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(Pt 3), 220–224 (2003). [CrossRef] [PubMed]
  18. A. E. Babayan and KhV. Nerkararyan, “The strong localization of surface plasmon polariton on a metal-coated tip of optical fiber,” Ultramicroscopy 107(12), 1136–1140 (2007). [CrossRef] [PubMed]
  19. T. Abrahamyan and K. V. Nerkararyan, “Surface plasmon resonance on vicinity of gold-coated fiber tip,” Phys. Lett. A 364(6), 494–496 (2007). [CrossRef]
  20. K. Nerkararyan, T. Abrahamyan, E. Janunts, R. Khachatryan, and S. Harutyunyan, “Excitation and propagation of surface plasmon polaritons on the gold covered conical tip,” Phys. Lett. A 350(1-2), 147–149 (2006). [CrossRef]
  21. W. Nakagawa, L. Vaccaro, H. P. Herzig, and C. Hafner, “Polarization mode coupling due to metal-layer modifications in apertureless near-field scanning optical microscopy probes,” J. Comput. Theor. Nanosci. 4, 692–703 (2007).
  22. V. Lotito, U. Sennhauser, and C. Hafner, “Finite element analysis of asymmetric scanning near field optical microscopy probes,” J. Comput. Theor. Nanosci. (to be published).
  23. M. C. Quong and A. Y. Elezzabi, “Offset-apertured near-field scanning optical microscope probes,” Opt. Express 15(16), 10163–10174 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-16-10163 . [CrossRef] [PubMed]
  24. T. J. Antosiewicz and T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope,” Opt. Express 15(17), 10920–10928 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-17-10920 . [CrossRef] [PubMed]
  25. T. J. Antosiewicz and T. Szoplik, “Corrugated SNOM probe with enhanced energy throughput,” Opto-Electron. Rev. 16(4), 451–457 (2008). [CrossRef]
  26. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007). [CrossRef] [PubMed]
  27. C. Ropers, C. C. Neacsu, M. B. Raschke, M. Albrecht, C. Lienau, and T. Elsaesser, “Light confinement at ultrasharp metallic tips,” Jpn. J. Appl. Phys. 47(7), 6051–6054 (2008). [CrossRef]
  28. F. I. Baida and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4(1), 51–59 (2009). [CrossRef]
  29. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(176805), 4 (2006). [CrossRef]
  30. L. Shen, X. Chen, and T. J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16(5), 3326–3333 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-5-3326 . [CrossRef] [PubMed]
  31. L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77(7), 075408 (2008). [CrossRef]
  32. J. J. Wu, T. J. Yang, and L. F. Shen, “Subwavelength microwave guiding by a periodically corrugated metal wire,” J. Electromagn. Waves Appl. 23(1), 11–19 (2009). [CrossRef]
  33. O. J. F. Martin and M. Paulus, “Influence of metal roughness on the near-field generated by an aperture/apertureless probe,” J. Microsc. 205(Pt 2), 147–152 (2002). [CrossRef] [PubMed]
  34. T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Nanofocusing of radially polarized light with dielectric-metal-dielectric probe,” Opt. Express 17(11), 9191–9196 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-11-9191 . [CrossRef] [PubMed]
  35. N. A. Janunts and K. V. Nerkararyan, “Modulation of light radiation during input into a waveguide by resonance excitation of surface plasmons,” Appl. Phys. Lett. 79(3), 299–301 (2001). [CrossRef]
  36. C. Themistos, B. M. Azimur Rahman, M. Rajarajan, V. Rakocevic, and K. T. V. Grattan, “Finite element solutions of surface-plasmon modes in metal-clad dielectric waveguides at THz frequency,” IEEE J. Lightwave Technol. 24(12), 5111–5118 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited