OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 8735–8742

Time-resolved analysis of cavitation induced by CW lasers in absorbing liquids

J.C. Ramirez-San-Juan, E. Rodriguez-Aboytes, A. E. Martinez-Canton, O. Baldovino-Pantaleon, A. Robledo-Martinez, N. Korneev, and R. Ramos-Garcia  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 8735-8742 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (878 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present novel results on thermocavitation using a CW medium-power near infrared laser (λ=975 nm) focused into a saturated copper nitrate saline solution. Due to the large absorption coefficient at the laser wavelength, the solution can be heated to its superheat limit (Tsh~270-300°C). Superheated water undergoes explosive phase transition around Tsh producing approximately half-hemispheric bubbles (γ~0.5) in close contact with the substrate. We report the temporal dynamic of the cavitation bubble, which is much shorter than previously reported under similar conditions. It was found that the bubble radius and pressure wave amplitude emitted on bubble collapse decreases exponentially with the power laser. Thermocavitation can be a useful tool for the generation of ultrasonic waves and controlled ablation for use in high-resolution lithography.

© 2010 OSA

OCIS Codes
(190.4870) Nonlinear optics : Photothermal effects
(170.1065) Medical optics and biotechnology : Acousto-optics
(280.3375) Remote sensing and sensors : Laser induced ultrasonics
(280.5395) Remote sensing and sensors : Plasma diagnostics

ToC Category:
Nonlinear Optics

Original Manuscript: December 2, 2009
Revised Manuscript: January 15, 2010
Manuscript Accepted: January 24, 2010
Published: April 12, 2010

J.C. Ramirez-San-Juan, E. Rodriguez-Aboytes, A. E. Martinez-Canton, O. Baldovino-Pantaleon, A. Robledo-Martinez, N. Korneev, and R. Ramos-Garcia, "Time-resolved analysis of cavitation induced by CW lasers in absorbing liquids," Opt. Express 18, 8735-8742 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Michel, and J. P. Franc, Fundamentals of Cavitation Springer 2004.
  2. C. E. Brennen, Cavitation and Bubble Dynamics Oxford University Press, USA (1995)
  3. F. R. Young, Cavitation, Imperial College Press, London (1999).
  4. L. Azar “Cavitation in Ultrasonic Cleaning and Cell Disruption” Controlled Environments February, 14–17 (2009).
  5. W. Lauterborn, ed., “Cavitation and inhomogeneities in underwater acoustics” Springer-Verlag (1980).
  6. R. G. Brewer and K. E. Rieckhoff, “Stimulated Brillouin scattering in liquids,” Phys. Rev. Lett. 13(11), 334–336 (1964). [CrossRef]
  7. E. F. Carome, C. E. Moeller, and N. A. Clark, “Intense Ruby-Laser-Induced Acoustic Impulses in Liquids,” J. Acoust. Soc. Am. 40(6), 1462–1466 (1966). [CrossRef]
  8. W. Lauterborn, “High-speed photography of laser-induced breakdown in liquids,” Appl. Phys. Lett. 21(1), 27–29 (1972). [CrossRef]
  9. C. A. Sacchi, “Laser-induced electric breakdown in water,” J. Opt. Soc. Am. B 8(2), 337–345 (1991). [CrossRef]
  10. P. A. Barnes and K. E. Rieckhoff, “Laser-induced underwater sparks,” Appl. Phys. Lett. 13(8), 282–284 (1968). [CrossRef]
  11. K.-T. Byun, H.-Y. Kwak, and S. W. Karng, “Bubble Evolution and Radiation Mechanism for Laser-Induced Collapsing Bubble in Water,” Jpn. J. Appl. Phys. 43(No. 9A), 6364–6370 (2004). [CrossRef]
  12. J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83(12), 7488–7495 (1998). [CrossRef]
  13. C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, “Bubble dynamics, shock waves and sonoluminiscence,” Philos. Trans. R. Soc. Lond. A 357(1751), 269–294 (1999). [CrossRef]
  14. S. F. Rastopov and A. T. Sukhodol’sky, “Cluster nucleation in the process of CW laser induced thermocavitation,” Phys. Lett. A 149(4), 229–232 (1990). [CrossRef]
  15. S. F. Rastopov and A. T. Sukhodolsky, “Sound generation by thermocavitation induced CW-laser in solutions,” Proc. SPIE 1440, 127–134 (1990). [CrossRef]
  16. B. P. Barber, R. A. Hiller, R. Lijfstedt, S. J. Putterman, and K. R. Weninger, “Defining the unknowns of sonoluminescence,” Phys. Rep. 281(2), 65–143 (1997). [CrossRef]
  17. J. C. Ramirez-San-Juan, et al., “Cavitation induced by CW lasers in liquids,” Proc. SPIE 7562–37, 1–5 (2010).
  18. V. P. Skripov and P. A. Pavlov, “Explosive boiling of liquids and fluctuation nucleus formation,” High Temp. (USSR) 8, 782–787 (1970).
  19. O. Yavas, P. Leiderer, H. K. Park, C. P. Grigoropoulos, C. C. Poon, W. P. Leung, N. Do, and A. C. Tam, “Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating,” Phys. Rev. Lett. 70(12), 1830–1833 (1993). [CrossRef] [PubMed]
  20. P. Kafalas and A. P. Ferdinand., “Fog droplet vaporization and fragmentation by a 10.6-μm laser pulse,” Appl. Opt. 12(1), 29–33 (1973). [CrossRef] [PubMed]
  21. V. P. Skripov, Metastable Liquids. John Wiley and Sons, New York (1974).
  22. A. Vogel, W. Lauterborn, and R. Timm, “Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary,” J. Fluid Mech. 206(-1), 299–338 (1989). [CrossRef]
  23. A. Vogel and W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near a solid boundaries,” J. Acoust. Soc. Am. 84(2), 719–731 (1988). [CrossRef]
  24. Private communication from RP Acoustics,
  25. A. Y. Çengel, Heat transfer: A practical approach, Pag. 23 McGraw-Hill, New York 2003.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited