OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 8781–8789

Nanobeam photonic crystal cavity quantum dot laser

Yiyang Gong, Bryan Ellis, Gary Shambat, Tomas Sarmiento, James S. Harris, and Jelena Vučković  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 8781-8789 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1193 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The lasing behavior of one dimensional GaAs nanobeam cavities with embedded InAs quantum dots is studied at room temperature. Lasing is observed throughout the quantum dot PL spectrum, and the wavelength dependence of the threshold is calculated. We study the cavity lasers under both 780 nm and 980 nm pump, finding thresholds as low as 0.3 μW and 19 μW for the two pump wavelengths, respectively. Finally, the nanobeam cavity laser wavelengths are tuned by up to 7 nm by employing a fiber taper in near proximity to the cavities. The fiber taper is used both to efficiently pump the cavity and collect the cavity emission.

© 2010 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.3600) Lasers and laser optics : Lasers, tunable
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.2285) Optical devices : Fiber devices and optical amplifiers
(230.5298) Optical devices : Photonic crystals

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 1, 2010
Revised Manuscript: April 8, 2010
Manuscript Accepted: April 8, 2010
Published: April 12, 2010

Yiyang Gong, Bryan Ellis, Gary Shambat, Tomas Sarmiento, James S. Harris, and Jelena Vuckovic, "Nanobeam photonic crystal cavity quantum dot laser," Opt. Express 18, 8781-8789 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. . O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999). [CrossRef] [PubMed]
  2. . M. Lon?ar, T. Yoshie, K. Okamoto, Y. Qiu, J. Vu?kovi?, and A. Scherer, “Planar photonic crystal nanolasers (I): Porous cavity lasers,” IEICE T. Electron. E87C 3, 291 (2004).
  3. . E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequencies,” Phys. Rev. 69, 681 (1946).
  4. . H. Altug, D. Englund, and J. Vu?kovi?, “Ultra-fast Photonic Crystal Nanolasers,” Nature Physics 2, 484 (2006). [CrossRef]
  5. . D. Englund, H. Altug, I. Fushman, and J. Vu?kovi?, “Efficient Terahertz Room-Temperature Photonic Crystal Nanocavity Laser,” Appl. Phys. Lett. 91, 071126 (2007). [CrossRef]
  6. . B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vu?kovi?, “Dynamics of Quantum Dot Photonic Crystal Lasers,” Appl. Phys. Lett. 90, 151102 (2007). [CrossRef]
  7. . M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14, 6308 (2006). [CrossRef] [PubMed]
  8. . M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, “Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor,” Phys. Rev. B 75, 195313 (2007). [CrossRef]
  9. . S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96, 127404 (2006). [CrossRef] [PubMed]
  10. . M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express 17, 15975 (2009). [CrossRef] [PubMed]
  11. . M. Lon?ar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648 (2003). [CrossRef]
  12. . J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides, ” Nature 390, 143 (1997). [CrossRef]
  13. . P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High Quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009). [CrossRef]
  14. . M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photoniccrystal optomechanical cavity,” Nature 459, 550 (2009). [CrossRef] [PubMed]
  15. . Y. Gong and J. Vu?kovi?, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010). [CrossRef]
  16. . Y. Zhang, M. Khan, Y. Huang, J.-H. Ryou, P. Deotare, R. Dupuis, and M. Lon?ar, “Photonic crystal nanobeam lasers,” arxiv:1002.2380 (2010).
  17. . B.-H. Ahn, J.-H. Kang, M.-K. Kim, J.-H. Song, B. Min, K.-S. Kim, and Y.-H. Lee, “One-dimensional parabolicbeam photonic crystal laser,” Opt. Express 18, 5654 (2010). [CrossRef] [PubMed]
  18. . T. P. M. Alegre, R. Perahia, and O. Painter, “Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability,” Opt. Express 18, 7872 (2010). [CrossRef] [PubMed]
  19. . D. Englund and J. Vu?kovi?, “A direct analysis of photonic nanostructures,” Opt. Express 4, 3472 (2006). [CrossRef]
  20. . L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Expr. 17, 21108 (2009). [CrossRef]
  21. . L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
  22. . M. P. van Exter, G. Nienhuis, and J. P. Woerdman, “Two simple expressions for the spontaneous emission factor ®, ” Phys. Rev. A. 54, 3553 (1996). [CrossRef] [PubMed]
  23. . I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Grard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17, 2095 (2009). [CrossRef] [PubMed]
  24. . T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lon?ar, “A diamond nanowire single-photon source,” Nat. Nanotech. 5, 195 (2010). [CrossRef]
  25. . U. Mohideen, R.E. Slusher, F. Jahnke, and S. Koch, “Semiconductor Microlaser Linewidths,” Phys. Rev. Lett. 73, 1785 (1994). [CrossRef] [PubMed]
  26. . G. Shambat, Y. Gong, J. Lu, S. Yerci, R. Li, L. dal Negro, and J. Vu?kovi?, “Coupled fiber taper extraction of 1.53 um photoluminescence from erbium doped silicon nitride photonic crystal cavities,” Opt. Express 18, 5964 (2010). [CrossRef] [PubMed]
  27. . I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited