OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 8859–8866

Vortex solitons in lasers with feedback

P. V. Paulau, D. Gomila, P. Colet, N. A. Loiko, N. N. Rosanov, T. Ackemann, and W. J. Firth  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 8859-8866 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1455 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the existence, stability and dynamical properties of two-dimensional self-localized vortices with azimuthal numbers up to 4 in a simple model for lasers with frequency-selective feedback. We build the full bifurcation diagram for vortex solutions and characterize the different dynamical regimes. The mathematical model used, which consists of a laser rate equation coupled to a linear equation for the feedback field, can describe the spatiotemporal dynamics of broad area vertical cavity surface emitting lasers with external frequency selective feedback in the limit of zero delay.

© 2010 Optical Society of America

OCIS Codes
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

Original Manuscript: January 26, 2010
Revised Manuscript: March 5, 2010
Manuscript Accepted: March 8, 2010
Published: April 13, 2010

P. V. Paulau, D. Gomila, P. Colet, N. A. Loiko, N. N. Rosanov, T. Ackemann, and W. J. Firth, "Vortex solitons in lasers with feedback," Opt. Express 18, 8859-8866 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Ackemann, W. J. Firth, and G.-L. Oppo, "Fundamentals and applications of Spatial Dissipative Solitons in Photonic Devices," Adv. Atom. Mol. Opt. Phys. 57, 323 (2009).
  2. S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knodlk, M. Millerk, and R. Jagerk, "Cavity solitons as pixels in semiconductor microcavities," Nature (London) 419, 699 (2002).
  3. Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jäger, "Realization of a Semiconductor-Based Cavity Soliton Laser," Phys. Rev. Lett. 100, 013907 (2008).
  4. P. Genevet, S. Barland, M. Guidici, and J. R. Tredicce, "Cavity soliton laser based on mutually coupled semiconductor microresonators," Phys. Rev. Let. 101, 123905 (2008).
  5. A. G. Vladimirov, N. N. Rosanov, S. V. Fedorov, and G. V. Khodova, "Bifurcation analysis of laser autosolitons," Quantum Electron. 27, 949-952 (1997).
  6. T. Elsass, K. Gauthron, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, "Fast manipulation of laser localized structures in a monolithic vertical cavity with saturable absorber," Appl. Phys. B 98, 327 (2010).
  7. P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, "Bistable and addressable localized vortices in semiconductor lasers," submitted (2009) http://hal.archives-ouvertes.fr/docs/00/43/59/20/PDF/localizedvortices.pdf.
  8. N. N. Rosanov, "Solitons in laser systems with saturable absorption," in Dissipative Solitons, edited by N. Akhmediev and A. Ankiewicz, Lect. Notes Phys. 661, 101-130 (2004).
  9. N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, "Curvilinear motion of multivortex laser-soliton complexes with strong and weak coupling," Phys. Rev. Lett. 95, 053903 (2005). [PubMed]
  10. L.-C. Crasovan, B. A. Malomed, and D. Michalache, "Stable vortex solitons in the two-dimensional Ginzburg-Landau equation," Phys. Rev. E 63, 016605 (2000).
  11. D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, "Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg-Landau equation," Phys. Rev. A 77, 033817 (2008).
  12. W. J. Firth and D. V. Skryabin, "Optical solitons carrying orbital angular momentum," Phys. Rev. Lett. 79, 2450 (1997).
  13. J. R. Salgueiro and Y. S. Kivshar, "Single- and double-vortex vector solitons in self-focusing nonlinear media," Phys. Rev. E 70, 056613 (2004).
  14. A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, "Optical vortices and vortex solitons," Progress in Optics, ed. E. Wolf, 47, 291 (2005).
  15. P. V. Paulau, D. Gomila, T. Ackemann, N. A. Loiko, and W. J. Firth, "Self-localized structures in vertical-cavity surface-emitting lasers with external feedback," Phys. Rev. E 78, 016212 (2008).
  16. P. V. Paulau, D. Gomila, P. Colet, M. A. Matias, N. A. Loiko, and W. J. Firth "Drifting instabilities of cavity solitons in vertical-cavity surface-emitting lasers with frequency-selective feedback," Phys. Rev. A 80, 023808 (2009).
  17. J. Atai, and B. A. Malomed, "Exact stable pulses in asymmetric linearly coupled Ginzburg-Landau equations," Phys. Lett. A 246, 412 (1998).
  18. W. J. Firth and P. V. Paulau, "Soliton lasers stabilized by coupling to a resonant linear system," submitted (2009).
  19. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity," Phys. Rev. Lett. 75, 826 (1995). [PubMed]
  20. S. Franke-Arnold, L. Allen, and M. Padgett, "Advances in optical angular momentum," Laser. Photon Rev. 2, 299 (2008).
  21. G. Molina-Terriza, J. P. Torres, and L. Torner, "Twisted photons," Nat. Phys. 3, 305 (2007).
  22. A. P. A. Fisher, O. K. Andersen, M. Yousefi, S. Stolte, and D. Lenstra, "Experimental and theoretical study of filtered optical feedback in a semiconductor laser," IEEE J. Quantum Electron. 36, 375 (2000).
  23. M. Tlidi, A. G. Vladimirov, D. Pieroux, and D. Turaev, "Spontaneous motion of cavity solitons induced by a delayed feedback," Phys. Rev. Lett,  103,103904 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (428 KB)     
» Media 2: AVI (705 KB)     
» Media 3: AVI (2455 KB)     
» Media 4: AVI (1622 KB)     
» Media 5: AVI (701 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited