OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 8879–8895

Control of the collapse of bimodal light beams by magnetically tunable birefringences

Katarzyna A. Rutkowska, Boris A. Malomed, and Roberto Morandotti  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 8879-8895 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (3617 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using a system of coupled nonlinear Schrödinger equations (CNLSEs), we show that nonlinear light propagation in self-focusing Kerr media can be controlled via a suitable combination of linear and circular birefringences. In particular, magneto-optical effects are taken as a specific physical example, which enables the introduction of both types of birefringences simultaneously via the joint action of the Cotton-Mouton and the Faraday effect. We demonstrate the efficient management of the collapse of (2 + 1)D beams in magneto-optic dielectric media, which may result in either the acceleration or the suppression of the collapse. However, our study also shows that a complete stabilization of the bimodal beams (i.e., the propagation of two-dimensional solitary waves) is not possible under the proposed conditions. The analysis is performed by directly numerically solving the CNLSEs, as well as by using the variational approximation, both showing consistent results. The investigated method allows high-power beam propagation in Kerr media while avoiding collapse, thus offering a viable alternative to the techniques applied in non-instantaneous and/or non-local nonlinear media.

© 2010 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(230.3810) Optical devices : Magneto-optic systems
(260.1440) Physical optics : Birefringence

ToC Category:
Nonlinear Optics

Original Manuscript: February 16, 2010
Revised Manuscript: March 18, 2010
Manuscript Accepted: April 2, 2010
Published: April 13, 2010

Katarzyna A. Rutkowska, Boris A. Malomed, and Roberto Morandotti, "Control of the collapse of bimodal light beams by magnetically tunable birefringences," Opt. Express 18, 8879-8895 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Sulem and P. L. Sulem, The nonlinear Schrödinger equation: self-focusing and wave collapse (Springer, New York 1999).
  2. E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and Chaos (Cambridge Univ. Press, Cambridge 2000).
  3. R. W. Boyd, Nonlinear Optics (Academic Press, San Diego 2008).
  4. B. A. Malomed, “Nonlinear Schrödinger equations,” in Encyclopedia of Nonlinear Science, A. Scott, ed., (Routledge, New York 2005).
  5. Y. S. Kivshar, and P. G. Agrawal, Optical Solitons: From Fibers to Photonic Crystal (Academic Press, San Diego 2003).
  6. S. Trillo and W. Torruellas, Spatial Solitons (Springer-Verlag, Berlin 2001).
  7. G. I. Stegeman and M. Segev, “Optical Spatial Solitons and Their Interactions: Universality and Diversity,” Science 286(5444), 1518–1523 (1999). [CrossRef] [PubMed]
  8. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-Trapping of Optical Beams,” Phys. Rev. Lett. 13(15), 479–482 (1964). [CrossRef]
  9. K. D. Moll, A. L. Gaeta, and G. Fibich, “Self-similar optical wave collapse: observation of the Townes profile,” Phys. Rev. Lett. 90(20), 203902 (2003). [CrossRef] [PubMed]
  10. G. Fibich and A. L. Gaeta, “Critical power for self-focusing in bulk media and in hollow waveguides,” Opt. Lett. 25(5), 335–337 (2000). [CrossRef] [PubMed]
  11. M. Weinstein, “Nonlinear Schrödinger Equations and Sharp Interpolation Estimates,” Commun. Math. Phys. 87(4), 567–576 (1983). [CrossRef]
  12. T. Lahaye, J. Metz, B. Fröhlich, T. Koch, M. Meister, A. Griesmaier, T. Pfau, H. Saito, Y. Kawaguchi, and M. Ueda, “d-wave collapse and explosion of a dipolar bose-einstein condensate,” Phys. Rev. Lett. 101(8), 080401 (2008). [CrossRef] [PubMed]
  13. T. Koch, T. Lahaye, J. Metz, B. Fröhlich, A. Griesmaier, and T. Pfau, “Stabilization of a purely dipolar quantum gas against collapse,” Nat. Phys. 4(3), 218–222 (2008). [CrossRef]
  14. P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15(26), 1005–1008 (1965). [CrossRef]
  15. L. Bergé, “Wave collapse in physics: principles and applications to light and plasma waves,” Phys. Rep. 303(5-6), 259–370 (1998). [CrossRef]
  16. T. D. Grow, A. A. Ishaaya, L. T. Vuong, and A. L. Gaeta, “Collapse and stability of necklace beams in Kerr media,” Phys. Rev. Lett. 99(13), 133902 (2007). [CrossRef] [PubMed]
  17. D. P. Lathrop, B. W. Zeff, B. Kleber, and J. Fineberg, “Singularity dynamics in curvature collapse and jet eruption on a fluid surface,” Nature 403(6768), 401–404 (2000). [CrossRef] [PubMed]
  18. P. A. Robinson, “Nonlinear wave collapse and strong turbulence,” Rev. Mod. Phys. 69(2), 507–574 (1997). [CrossRef]
  19. Y. R. Shen, “Recent advances in nonlinear optics,” Rev. Mod. Phys. 48(1), 1–32 (1976). [CrossRef]
  20. E. A. Kuznetsov, J. J. Rasmussen, K. Rypdal, and S. K. Turitsyn, “Shaper criteria for the wave collapse,” Physica D 87(1-4), 273–284 (1995). [CrossRef]
  21. Y. Silberberg, “Collapse of optical pulses,” Opt. Lett. 15(22), 1282–1284 (1990). [CrossRef] [PubMed]
  22. F. Wise and P. di Trapani, “The Hunt for Light Bullets – Spatiotemporal Solitons,” Opt. Photonics News 13(2), 29 (2002).
  23. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B: Quant. Semicl. Opt. 7(5), R53–R72 (2005). [CrossRef]
  24. A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010). [CrossRef]
  25. Y. S. Kivshar and D. E. Pelinovsky, “Self-focusing and transverse instabilities of solitary waves,” Phys. Rep. 331(4), 117–195 (2000). [CrossRef]
  26. A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84(16), 3582–3585 (2000). [CrossRef] [PubMed]
  27. G. Fibich and G. C. Papanicolaou, “Self-focusing in the presence of small time dispersion and nonparaxiality,” Opt. Lett. 22(18), 1379–1381 (1997). [CrossRef] [PubMed]
  28. D. Cheskis, S. Bar-Ad, R. Morandotti, J. S. Aitchison, H. S. Eisenberg, Y. Silberberg, and D. Ross, “Strong spatiotemporal localization in a silica nonlinear waveguide array,” Phys. Rev. Lett. 91(22), 223901 (2003). [CrossRef] [PubMed]
  29. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Does the nonlinear Schrödinger equation correctly describe beam propagation?” Opt. Lett. 18(6), 411–413 (1993). [CrossRef] [PubMed]
  30. G. Fibich and B. Ilan, “Optical light bullets in a pure Kerr medium,” Opt. Lett. 29(8), 887–889 (2004). [CrossRef] [PubMed]
  31. O. Bang, J. J. Rasmussen, and P. L. Christiansen, “Subcritical localization in the discrete nonlinear Schrödinger equation with arbitrary power nonlinearity,” Nonlinearity 7(1), 205–218 (1994). [CrossRef]
  32. A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica,” Opt. Express 14(13), 6055–6062 (2006). [CrossRef] [PubMed]
  33. O. Bang, D. Edmundson, and W. Królikowski, “Collapse of incoherent light beams in inertial bulk Kerr media,” Phys. Rev. Lett. 83(26), 5479–5482 (1999). [CrossRef]
  34. A. S. Desyatnikov, D. Buccoliero, M. R. Dennis, and Y. S. Kivshar, “Suppression of collapse for spiraling elliptic solitons,” Phys. Rev. Lett. 104(5), 053902 (2010). [CrossRef] [PubMed]
  35. L. Bergé, O. Bang, J. J. Rasmussen, and V. K. Mezentsev, “Self-focusing and solitonlike structures in materials with competing quadratic and cubic nonlinearities,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(3), 3555–3570 (1997). [CrossRef]
  36. V. Skarka, V. I. Berezhiani, and R. Miklaszewski, “Spatiotemporal soliton propagation in saturating nonlinear optical media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(1), 1080–1087 (1997). [CrossRef]
  37. S. Gatz and J. Herrmann, “Propagation of optical beams and the properties of two-dimensional spatial solitons in media with a local saturable nonlinear refractive index,” J. Opt. Soc. Am. B 14(7), 1795 (1997). [CrossRef]
  38. O. Bang, W. Krolikowski, J. Wyller, and J. J. Rasmussen, “Collapse arrest and soliton stabilization in nonlocal nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046619 (2002). [CrossRef] [PubMed]
  39. M. Peccianti, K. A. Brzdkiewicz, and G. Assanto, “Nonlocal spatial soliton interactions in nematic liquid crystals,” Opt. Lett. 27(16), 1460–1462 (2002). [CrossRef] [PubMed]
  40. P. Pedri and L. Santos, “Two-dimensional bright solitons in dipolar Bose-Einstein condensates,” Phys. Rev. Lett. 95(20), 200404 (2005). [CrossRef] [PubMed]
  41. I. Towers and B. A. Malomed, “Stable (2+1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity,” J. Opt. Soc. Am. B 19(3), 537 (2002). [CrossRef]
  42. F. Kh. Abdullaev, J. G. Caputo, R. A. Kraenkel, and B. A. Malomed, “Controlling collapse in Bose-Einstein condensation by temporal modulation of the scattering length,” Phys. Rev. A 67(1), 013605 (2003). [CrossRef]
  43. H. Saito and M. Ueda, “Dynamically stabilized bright solitons in a two-dimensional bose-einstein condensate,” Phys. Rev. Lett. 90(4), 040403 (2003). [CrossRef] [PubMed]
  44. S. Eisenmann, E. Louzon, Y. Katzir, T. Palchan, A. Zigler, Y. Sivan, and G. Fibich, “Control of the filamentation distance and pattern in long-range atmospheric propagation,” Opt. Express 15(6), 2779–2784 (2007). [CrossRef] [PubMed]
  45. J. Yang and Z. H. Musslimani, “Fundamental and vortex solitons in a two-dimensional optical lattice,” Opt. Lett. 28(21), 2094–2096 (2003). [CrossRef] [PubMed]
  46. C. R. Menyuk, “Stability of solitons in birefringent optical fibers. I: equal propagation amplitudes,” Opt. Lett. 12(8), 614–616 (1987). [CrossRef] [PubMed]
  47. S. Trillo, S. Wabnitz, E. M. Wright, and G. I. Stegeman, “Polarized soliton instability and branching in birefringent fibers,” Opt. Commun. 70(2), 166–172 (1989). [CrossRef]
  48. B. A. Malomed, “Polarization dynamics and interactions of solitons in a birefringent optical fiber,” Phys. Rev. A 43(1), 410–423 (1991). [CrossRef] [PubMed]
  49. Y. Barad and Y. Silberberg, “Polarization Evolution and Polarization Instability of Solitons in a Birefringent Optical Fiber,” Phys. Rev. Lett. 78(17), 3290–3293 (1997). [CrossRef]
  50. L. Bergé, O. Bang, and W. Królikowski, “Influence of four-wave mixing and walk-Off on the self-focusing of coupled waves,” Phys. Rev. Lett. 84(15), 3302–3305 (2000). [CrossRef] [PubMed]
  51. O. Bang, L. Bergé, and J. J. Rasmussen, “Fusion, collapse, and stationary bound states of incoherently coupled waves in bulk cubic media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(4), 4600–4613 (1999). [CrossRef]
  52. R. Kurzynowski and W. A. Wo?niak, “Superposition rule for the magneto-optic effects in isotropic media,” Optik (Stuttg.) 115(10), 473–475 (2004). [CrossRef]
  53. A. K. Zvezdin, and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Taylor & Francis Group, New York 1997).
  54. J. F. Dillon, J. P. Remeika, and C. R. Staton, “Linear Magnetic Birefringence in the Ferrimagnetic Garnets,” J. Appl. Phys. 41(11), 4613 (1970). [CrossRef]
  55. G. B. Scott, D. E. Lacklison, H. I. Ralph, and J. L. Page, “Magnetic circular dichroism and Faraday rotation spectra of Y3Fe5O12,” Phys. Rev. B 12(7), 2562 (1975). [CrossRef]
  56. G. A. Smolenskii, R. V. Pisarev, and I. G. Sinii, “Birefringence of light in magnetically ordered crystals,” Usp. Fiziol. Nauk 116, 231 (1975). [CrossRef]
  57. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  58. R. J. Ballagh, K. Burnett, and T. F. Scott, “Theory of an Output Coupler for Bose-Einstein Condensated Atoms,” Phys. Rev. Lett. 78(9), 1607–1611 (1997). [CrossRef]
  59. B. A. Malomed, “Variational methods in nonlinear fiber optics and related fields,” Progr. Opt. 43, 71 (2002). [CrossRef]
  60. M. Desaix, D. Anderson, and M. Lisak, “Variational approach to collapse of the optical pulses,” J. Opt. Soc. Am. B 8(10), 2082 (1991). [CrossRef]
  61. Y. Linzon, K. A. Rutkowska, B. A. Malomed, and R. Morandotti, “Magneto-optical control of light collapse in bulk Kerr media,” Phys. Rev. Lett. 103(5), 053902 (2009). [CrossRef] [PubMed]
  62. J.-M. Liu, Photonic Devices, Cambridge Univ. Press, New York 2005.
  63. O. Kamada, T. Nakaya, and S. Higuchi, “Magnetic field optical sensors using Ce:YIG single crystals as a Faraday element,” Sens. Actuators A Phys. 119(2), 345–348 (2005). [CrossRef]
  64. M. C. Sekhar, J.-Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce: and Bi: co-modified epitaxial iron garnet thin films,” Appl. Phys. Lett. 94(18), 181916 (2009). [CrossRef]
  65. U. M. Ascher, Numerical methods for evolutionary differential equations (SIAM, Philadelphia 2008).
  66. J. C. Butcher, Numerical Methods for Ordinary Differential Equations (Wiley & Sons, West Sussex 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 2 Fig. 3 Fig. 1
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited