OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 8906–8915

Higher order guided mode propagation in solid-core photonic bandgap fibers

Vincent Pureur, Jonathan C. Knight, and Boris T. Kuhlmey  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 8906-8915 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (7339 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate higher order core-modes of solid-core photonic bandgap fibers experimentally and theoretically. We observe that for some wavelengths ranges the second mode is guided while the fundamental mode is not. We interpret this behavior in terms of the band diagrams and full numerical simulations, in good agreements with experiments. The sole guidance of the second, ring shaped modes observed at the edges of bandgaps could be of use for generation of vortex beams.

© 2010 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 14, 2009
Revised Manuscript: April 6, 2010
Manuscript Accepted: April 8, 2010
Published: April 14, 2010

Vincent Pureur, Jonathan C. Knight, and Boris T. Kuhlmey, "Higher order guided mode propagation in solid-core photonic bandgap fibers," Opt. Express 18, 8906-8915 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003). [CrossRef] [PubMed]
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999). [CrossRef] [PubMed]
  3. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fibre,” Opt. Lett. 22(13), 961–962 (1997). [CrossRef] [PubMed]
  4. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29(20), 2369–2371 (2004). [CrossRef] [PubMed]
  5. T. P. White, R. C. McPhedran, C. Martijnde Sterke, N. M. Litchinitser, and B. J. Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett. 27(22), 1977–1979 (2002). [CrossRef]
  6. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008). [CrossRef]
  7. L. Bigot, G. Bouwmans, Y. Quiquempois, A. Le Rouge, V. Pureur, O. Vanvincq, and M. Douay, “Efficient fiber Bragg gratings in 2D all-solid photonic bandgap fiber,” Opt. Express 17(12), 10105–10112 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-10105 . [CrossRef] [PubMed]
  8. A. Fuerbach, P. Steinvurzel, J. A. Bolger, A. Nulsen, and B. J. Eggleton, “Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers,” Opt. Lett. 30(8), 830–832 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-8-830 . [CrossRef] [PubMed]
  9. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express 13(21), 8452–8459 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-21-8452 . [CrossRef] [PubMed]
  10. R. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, and B. J. Eggleton, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThK3 http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2002-ThK3 .
  11. T. T. Alkeskjold, J. Laegsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, and S.-T. Wu, “Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber,” Appl. Opt. 45(10), 2261–2264 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ao-45-10-2261 . [CrossRef] [PubMed]
  12. P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, “Tuning properties of long period gratings in photonic bandgap fibers,” Opt. Lett. 31(14), 2103–2105 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-14-2103 . [CrossRef] [PubMed]
  13. R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmey, B. J. Eggleton, and K. Himeno, “Birefringent all-solid hybrid microstructured fiber,” Opt. Express 16(23), 18752–18763 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-18752 . [CrossRef]
  14. T. Taru, and J. C. Knight, “Raman gain suppression in all-solid photonic bandgap fiber”, in 33rd European Conference and Exhibition on Optical Communication (Berlin, Germany, 2007), pp. 711.
  15. A. Isomäki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14(20), 9238–9243 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9238 . [CrossRef] [PubMed]
  16. J. Riishede, J. Laegsgaard, J. Broeng, and A. Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm,” Pure Appl. Opt. 6(7), 667–670 (2004). [CrossRef]
  17. M. J. F. Digonnet, H. K. Kim, G. S. Kino, and S. Fan, “Understanding Air-Core Photonic-Bandgap Fibers: Analogy to Conventional Fibers,” J. Lightwave Technol. 23(12), 4169–4177 (2005). [CrossRef]
  18. T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16(22), 17972–17981 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17972 . [CrossRef] [PubMed]
  19. S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-13-748 . [CrossRef] [PubMed]
  20. A. Argyros, “Guided modes and loss in Bragg fibres,” Opt. Express 10(24), 1411–1417 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-24-1411 . [PubMed]
  21. O. N. Egorova, D. A. Gaponov, N. A. Harchenko, A. F. Kosolapov, S. A. Letunov, A. D. Pryamikov, S. L. Semjonov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, A. N. Guryanov, and D. V. Kuksenkov, “All-Solid Photonic Bandgap Fiber with Large Mode Area and High Order Modes Suppression,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuMM3 http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CTuMM3
  22. R. Guobin, W. Zhi, L. Shuqin, and J. Shuisheng, “Mode classification and degeneracy in photonic crystal fibers,” Opt. Express 11(11), 1310–1321 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-11-1310 . [CrossRef] [PubMed]
  23. T. A. Birks, G. J. Pearce, and D. M. Bird, “Approximate band structure calculation for photonic bandgap fibres,” Opt. Express 14(20), 9483–9490 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9483 . [CrossRef] [PubMed]
  24. T. White, B. Kuhlmey, R. McPhedran, D. Maystre, G. Renversez, C. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19(10), 2322–2330 (2002). [CrossRef]
  25. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-18-1592 . [CrossRef]
  26. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, “Bend loss in all-solid bandgap fibres,” Opt. Express 14(12), 5688–5698 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5688 . [CrossRef] [PubMed]
  27. J. Lægsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A, Pure Appl. Opt. 6(8), 798–804 (2004). [CrossRef]
  28. G. Renversez, P. Boyer, and A. Sagrini, “Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling,” Opt. Express 14(12), 5682–5687 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5682 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited