OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 8969–8975

Passively Q-switched photonic crystal fiber laser and intracavity optical parametric oscillator

W. Z. Zhuang, W. C. Huang, Y. P. Huang, K. W. Su, and Y. F. Chen  »View Author Affiliations


Optics Express, Vol. 18, Issue 9, pp. 8969-8975 (2010)
http://dx.doi.org/10.1364/OE.18.008969


View Full Text Article

Enhanced HTML    Acrobat PDF (841 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a passively Q-switched photonic crystal fiber (PCF) laser with Cr4+:YAG as a saturable absorber. Under a pump power of 14.2 W, the maximum pulse energy is up to 630 μJ with a pulse width of 36 ns at a repetition rate of 5.6 kHz. With an intracavity optical parametric oscillator, the passively Q-switched PCF laser is used to generate the signal wave at 1515 nm. The output pulse energy of the signal wave is found to be 140 μJ with a pulse width as short as 1.0 ns at a repetition rate of 3.3 kHz. The very short pulse width leads to the peak power up to 140 kW.

© 2010 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3540) Lasers and laser optics : Lasers, Q-switched
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 1, 2010
Revised Manuscript: April 11, 2010
Manuscript Accepted: April 13, 2010
Published: April 14, 2010

Citation
W. Z. Zhuang, W. C. Huang, Y. P. Huang, K. W. Su, and Y. F. Chen, "Passively Q-switched photonic crystal fiber laser and intracavity optical parametric oscillator," Opt. Express 18, 8969-8975 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-9-8969


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys. 38(9), S681–S693 (2005). [CrossRef]
  2. Y. Jeong, J. K. Sahu, M. Laroche, W. A. Clarkson, K. Furusawa, D. J. Richardson, and J. Nilsson, “120-W Q-switched cladding-pumped Yb-doped fibre laser,” in Proc. Conference on Lasers and Electro-Optics Europe, 2003. CLEO/Europe, Munich ICM, Germany, June 22–27, 2003, 626–626 (2003).
  3. J. Limpert, S. Höfer, A. Liem, H. Zellmer, A. Tünnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75(4-5), 477–479 (2002). [CrossRef]
  4. Y. Jeong, J. K. Sahu, R. B. Williams, D. J. Richardson, K. Furusawa, and J. Nilsson, “Ytterbium-doped largecore fibre laser with 272 W output power,” Electron. Lett. 39(13), 977–978 (2003). [CrossRef]
  5. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004). [CrossRef] [PubMed]
  6. A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, V. Reichel, K. Mörl, S. Jetschke, S. Unger, H.-R. Müller, J. Kirchhof, T. Sandrock, and A. Harschak, “1.3 kW Yb-doped fiber laser with excellent beam quality,” in Proc. Conference on Lasers and Electro-Optics 2004, San Francisco, USA, May 16–21, 2004, postdeadline paper CPDD2.
  7. A. Fotiadi, A. Kurkov, and I. Razdobreev, “All-fiber passively Q-switched ytterbium laser,” CLEO/Europe-EQEC 2005, Technical Digest, CJ 2–3, Munich, Germany (2005).
  8. Z. J. Chen, A. B. Grudinin, J. Porta, and J. D. Minelly, “Enhanced Q switching in double-clad fiber lasers,” Opt. Lett. 23(6), 454–456 (1998). [CrossRef]
  9. O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tünnermann, “Millijoule pulse energy Q-switched short-length fiber laser,” Opt. Lett. 32(11), 1551–1553 (2007). [CrossRef] [PubMed]
  10. R. Ashinoff and R. G. Geronemus, “Rapid response of traumatic and medical tattoos to treatment with the Q-switched ruby laser,” Plast. Reconstr. Surg. 91(5), 841–845 (1993). [CrossRef] [PubMed]
  11. C. C. Ranaud, H. L. Offerhaus, J. A. Alvarez-Chavez, C. J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37(2), 199–206 (2001). [CrossRef]
  12. J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, “High-energy, high-power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25(1), 37–39 (2000). [CrossRef]
  13. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express 13(4), 1055–1058 (2005). [CrossRef] [PubMed]
  14. J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994). [CrossRef] [PubMed]
  15. X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997). [CrossRef]
  16. A. Agnesi and S. Dell’acqua, “High-peak-power diode-pumped passively Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(4), 351–354 (2003). [CrossRef]
  17. Y. Kalisky, “Cr4+-doped crystals: their use as lasers and passive Q-switches,” Prog. Quantum Electron. 28(5), 249–303 (2004). [CrossRef]
  18. A. Sennaroglu, U. Demirbas, S. Ozharar, and F. Yaman, “Accurate determination of saturation parameters for Cr4+-doped solid-state saturable absorbers,” J. Opt. Soc. Am. B 23(2), 241–249 (2006). [CrossRef]
  19. M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Aït-Ameur, “Nanosecond pulse generation in a passively Q-switched Yb-doped fiber laser by Cr4+:YAG saturable absorber,” IEEE Photon. Technol. Lett. 18(6), 764–766 (2006). [CrossRef]
  20. L. Pan, I. Utkin, and R. Fedosejevs, “Passively Q-switched ytterbium-doped double-clad fiber laser with a Cr4+:YAG saturable absorber,” IEEE Photon. Technol. Lett. 19(24), 1979–1981 (2007). [CrossRef]
  21. J. Y. Huang, W. Z. Zhuang, W. C. Huang, K. W. Su, C. Hu, K. F. Huang, and Y. F. Chen, “Comparative studies for Cr4+:YAG crystal and AlGaInAs semiconductor used as a saturable absorber in Q-switched Yb-doped fiber lasers,” Opt. Express 17(23), 20800–20805 (2009). [CrossRef] [PubMed]
  22. Y. X. Fan, F. Y. Lu, S. L. Hu, K. C. Lu, H. J. Wang, X. Y. Dong, J. L. He, and H. T. Wang, “Tunable high-peak-power, high-energy hybrid Q-switched double-clad fiber laser,” Opt. Lett. 29(7), 724–726 (2004). [CrossRef] [PubMed]
  23. P. Myslinski, J. Chrostowski, J. Koningstein, and J. Simpson, “Self-mode locking in a Q-switched erbium-doped fiber laser,” Appl. Opt. 32(3), 286–290 (1993). [CrossRef] [PubMed]
  24. M. H. Crowell, “Characteristics of mode-coupled lasers,” IEEE J. Quantum Electron. 1(1), 12–20 (1965). [CrossRef]
  25. H. Statz and C. L. Tang, “Phase locking of modes in lasers,” J. Appl. Phys. 36(12), 3923–3927 (1965). [CrossRef]
  26. M. A. Duguay, S. L. Shapiro, and P. M. Rentzepis, “Spontaneous appearance of picosecond pulses in ruby and Nd: glass lasers,” Phys. Rev. Lett. 19(18), 1014–1016 (1967). [CrossRef]
  27. O. L. Gaddy and E. M. Schaefer, “Self locking of modes in the argon ion laser,” Appl. Phys. Lett. 9(8), 281–282 (1966). [CrossRef]
  28. A. A. Grütter, H. P. Weber, and R. Dändliker, “Imperfectly mode-locked laser emission and its effects on nonlinear optics,” Phys. Rev. 185(2), 629–643 (1969). [CrossRef]
  29. R. Dändliker, A. A. Grütter, and H. P. Weber, “Statistical amplitude and phase variations in mode-locked lasers,” IEEE J. Quantum Electron. 6(11), 687–693 (1970). [CrossRef]
  30. H. Statz, “On the condition for self-locking of modes in lasers,” J. Appl. Phys. 38(12), 4648–4655 (1967). [CrossRef]
  31. H. Statz and M. Bass, “Locking in multimode solid-state lasers,” J. Appl. Phys. 40(1), 377–383 (1969). [CrossRef]
  32. P. Glas and M. Naumann, Self pulsing versus self locking in a cw pumped neodymium doped double clad fiber laser,” Opt. Commun. 161(4-6), 345–358 (1999). [CrossRef]
  33. H. C. Liang, R. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, “Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser,” Opt. Express 16(25), 21149–21154 (2008). [CrossRef] [PubMed]
  34. J. Y. Huang, W. C. Huang, W. Z. Zhuang, K. W. Su, Y. F. Chen, and K. F. Huang, “High-pulse-energy, passively Q-switched Yb-doped fiber laser with AlGaInAs quantum wells as a saturable absorber,” Opt. Lett. 34(15), 2360–2362 (2009). [CrossRef] [PubMed]
  35. J. Miao, J. Peng, B. Wang, and H. Tan, “Compact KTA-based intracavity optical parametric oscillator driven by a passively Q-switched Nd:GdVO4 laser,” Appl. Opt. 47(23), 4287–4291 (2008). [CrossRef] [PubMed]
  36. H. T. Huang, J. L. He, X. L. Dong, C. H. Zuo, B. T. Zhang, G. Qiu, and Z. K. Liu, “High-repetition-rate eye-safe intracavity KTA OPO driven by a diode-end-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 90(1), 43–45 (2008). [CrossRef]
  37. Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “Efficient acousto-optically Q-switched intracavity Nd:YAG/KTiOAsO4 optical parametric oscillator,” Appl. Phys. B 92(1), 37–41 (2008). [CrossRef]
  38. E. Gregor, D. E. Nieuwsma, and R. D. Stultz, “20 Hz eyesafe laser rangefinder for air defense,” Proc. SPIE 1207, 124–134 (1990). [CrossRef]
  39. L. R. Marshall, A. D. Hays, and J. Kasinski, “Highly efficient optical parametric oscillators,” Proc. SPIE 1419, 141–152 (1991). [CrossRef]
  40. J. E. Nettleton, B. W. Schilling, D. N. Barr, and J. S. Lei, “Monoblock laser for a low-cost, eyesafe, microlaser range finder,” Appl. Opt. 39(15), 2428–2432 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited