OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9026–9033

More studies on Metamaterials Mimicking de Sitter space

Miao Li, Rong-Xin Miao, and Yi Pang  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 9026-9033 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (655 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We estimate the dominating frequencies contributing to the Casimir energy in a cavity of meta- materials mimicking de Sitter space, by solving the eigenvalue problem of Maxwell equations. It turns out the dominating frequencies are the inverse of the size of the cavity, and the degeneracy of these frequencies also explains our previous result on the unusually large Casimir energy. Our result suggests that carrying out the experiment in laboratory is possible theoretically.

© 2010 Optical Society of America

OCIS Codes
(000.2780) General : Gravity
(000.6800) General : Theoretical physics

ToC Category:
Physical Optics

Original Manuscript: January 5, 2010
Revised Manuscript: March 30, 2010
Manuscript Accepted: April 1, 2010
Published: April 14, 2010

Miao Li, Rong-Xin Miao, and Yi Pang, "More studies on metamaterials mimicking de Sitter space," Opt. Express 18, 9026-9033 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Bordag, The Casimir Effects 50 years later, (World Scientific Press, 1999).
  2. H. B. G. Casimir, "On the Attraction Between Two Perfectly Conducting Plates," Indag. Math. 10, 261 (1948).
  3. T. H. Boyer, "Quantum electromagnetic zero point energy of a conducting spherical shell and the Casimir model for a charged particle," Phys. Rev. 174, 1764-1776 (1968). [CrossRef]
  4. R. Balian and B. Duplantier, "Electromagnetic Waves Near Perfect Conductors. 2. Casimir Effect," Annals Phys. 112, 165-208 (1978). [CrossRef]
  5. K. A. Milton, L. L. DeRaad and J. S. Schwinger, "Casimir Selfstress On A Perfectly Conducting Spherical Shell," Annals Phys. 115, 388-403 (1978). [CrossRef]
  6. G. Plunien, B. Muller and W. Greiner, "The Casimir Effect," Phys. Rept. 134, 87-193 (1986). [CrossRef]
  7. C. M. Bender and P. Hays, "Zero Point Energy Of Fields In A Finite Volume," Phys. Rev. D 14, 2622-2632 (1976). [CrossRef]
  8. K. A. Milton, "Semiclassical Electron Models: Casimir Selfstress In Dielectric And Conducting Balls," Ann. Phys. 127, 49-61 (1980). [CrossRef]
  9. K. A. Milton, "Fermionic Casimir Stress On A Spherical Bag," Annals Phys. 150, 432-438 (1983). [CrossRef]
  10. M. Bordag, E. Elizalde, K. Kirsten and S. Leseduarte, "Casimir energies for massive fields in the bag," Phys. Rev. D 56, 4896-4904 (1997). [CrossRef]
  11. S. D. Odintsov, "Vilkovisky effective action in quantum gravity with matter," Theor. Math. Phys. 82, 45-51 (1990). [CrossRef]
  12. A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, "Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant," Astron. J. 116, 1009-1038 (1998). [CrossRef]
  13. S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, "Measurements of Omega and Lambda from 42 High-Redshift Supernovae," Astrophys.J. 517, 565-586 (1999).
  14. M. Li, R. X. Miao and Y. Pang, "Casimir Energy, Holographic Dark Energy and Electromagnetic Metamaterial Mimicking de Sitter," arXiv:0910.3375 [hep-th].
  15. Miao Li, "A Model of holographic dark energy," Phys. Lett. B 603, 1-5 (2004). [CrossRef]
  16. Qing-Guo Huang and Miao Li, "The Holographic Dark Energy in a Non-flat Universe," J. Cosmol. Astropart. Phys. 0408, 013 (2004). [CrossRef]
  17. J. Plebanski, "Electromagnetic Waves in Gravitational Fields," Phys. Rev. 118, 1396-1408 (1959). [CrossRef]
  18. U. Leonhardt and T. Philbin, "General Relativity in Electrical Engineering", New J. Phys. 8, 247 (2006). [CrossRef]
  19. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  20. K. Niu, C. Song, and M. L. Ge, "The geodesic form of light-ray trace in the inhomogeneous media," Opt. Express 17(14), 11753-11767 (2009). [CrossRef] [PubMed]
  21. R. A. Shelby, D. R. Smith, and S. Shultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  22. A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental Observations of a Left-Handed Material That Obeys Snell’s Law," Phys. Rev. Lett. 90, 137401 (2003). [CrossRef] [PubMed]
  23. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and Negative Refractive Index," Science 305, 788-792 (2004). [CrossRef] [PubMed]
  24. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Negative refraction by photonic crystals," Nature 423, 604-605 (2003). [CrossRef] [PubMed]
  25. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz Magnetic Response from Artificial Materials," Science 303, 1494-1496 (2004). [CrossRef] [PubMed]
  26. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic Response of Metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004). [CrossRef] [PubMed]
  27. J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, "Dielectric Optical Cloak," arXiv:0904.3602 [physics.optics].
  28. T. G. Mackay, S. Setiawan and A. Lakhtakia, "Negative phase velocity of electromagnetic waves and the cosmological constant," Eur. Phys. J. C 41S1, 1-4 (2005). [CrossRef]
  29. Q. Cheng and T. J. Cui, "An electromagnetic black hole made of metamaterials," arXiv:0910.2159 [physics.optics].
  30. T. G. Mackay and A. Lakhtakia, "Towards a metamaterial simulation of a spinning cosmic string," arXiv:0911.4163 [physics.optics].
  31. L. H. Ford, "Quantum Vacuum Energy In General Relativity," Phys. Rev. D 11, 3370-3377 (1975). [CrossRef]
  32. E. Newman and R. Penrose, "An Approach to gravitational radiation by a method of spin coefficients," J. Math. Phys. 3, 566-578 (1962). [CrossRef]
  33. S. A. Teukolsky, "Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations," Astrophys. J. 185, 635-648 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited