OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9034–9047

Generalized refractive tunable-focus lens and its imaging characteristics

Antonin Miks, Jiri Novak, and Pavel Novak  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 9034-9047 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1097 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Conventional lenses made from optical glass or plastics have fixed properties (e.g. focal length) that depend on the index of refraction and geometrical parameters of the lens. We present an approach to the problem of calculation of basic paraxial parameters and the third order aberration coefficients of compound optical elements analogical to classical lenses which are based on refractive tunable-focus lenses. A detailed theoretical analysis is performed for a simple tunable-focus lens, a generalized tunable-focus lens, a generalized tunable-focus lens with minimum spherical aberration, and three-element tunable-focus lens (a tunable-focus doublet).

© 2010 OSA

OCIS Codes
(080.3620) Geometric optics : Lens system design
(110.0110) Imaging systems : Imaging systems
(220.3630) Optical design and fabrication : Lenses
(110.1080) Imaging systems : Active or adaptive optics

Original Manuscript: March 1, 2010
Revised Manuscript: March 31, 2010
Manuscript Accepted: March 31, 2010
Published: April 14, 2010

Antonin Miks, Jiri Novak, and Pavel Novak, "Generalized refractive tunable-focus lens and its imaging characteristics," Opt. Express 18, 9034-9047 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. http://www.varioptic.com
  2. http://www.optotune.com/
  3. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000). [CrossRef]
  4. C. Gabay, B. Berge, G. Dovillaire, and S. Bucourt, “Dynamic study of a Varioptic variable focal lens,” SPIE Proc. 4767, 159–165 (2002). [CrossRef]
  5. B. Berge, “Liquid lens technology: Principle of electrowetting based lenses and applications to imaging”, Proc. IEEE MEMS, 227–230 (2004).
  6. B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005). [CrossRef]
  7. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004). [CrossRef]
  8. R. Peng, J. Chen, and S. Zhuang, “Electrowetting-actuated zoom lens with spherical-interface liquid lenses,” J. Opt. Soc. Am. A 25(11), 2644–2650 (2008). [CrossRef]
  9. D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005). [CrossRef]
  10. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006). [CrossRef] [PubMed]
  11. H. W. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007). [CrossRef] [PubMed]
  12. G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16(16), 11847–11857 (2008). [CrossRef] [PubMed]
  13. A. F. Naumov, G. D. Love, M. Y. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4(9), 344–352 (1999). [CrossRef] [PubMed]
  14. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002). [CrossRef]
  15. H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004). [CrossRef]
  16. M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realised using liquid crystal lenses,” Electron. Lett. 45(12), 646–648 (2009). [CrossRef]
  17. P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett. 35(3), 336–338 (2010). [CrossRef] [PubMed]
  18. R. Marks, D. L. Mathine, G. Peyman, J. Schwiegerling, and N. Peyghambarian, “Adjustable fluidic lenses for ophthalmic corrections,” Opt. Lett. 34(4), 515–517 (2009). [CrossRef] [PubMed]
  19. F. C. Wippermann, P. Schreiber, A. Bräuer, and P. Craen, “Bifocal liquid lens zoom objective for mobile phone applications,” SPIE Proc. 6501, 650109 (2007). [CrossRef]
  20. F. S. Tsai, S. H. Cho, Y. H. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33(3), 291–293 (2008). [CrossRef] [PubMed]
  21. B. H. W. Hendriks, S. Kuiper, M. A. J. van As, C. A. Renders, and T. W. Tukker, “Variable liquid lenses for electronic products,” Proc. SPIE 6034, 603402 (2006). [CrossRef]
  22. A. Miks, Applied Optics (Czech Technical University Press, Prague 2009). [PubMed]
  23. W. Smith, Modern Optical Engineering, 4th Ed. (McGraw-Hill, New York 2007).
  24. M. Born, and E. Wolf, Principles of Optics, (Oxford University Press, New York 1964).
  25. P. Mouroulis, and J. Macdonald, Geometrical Optics and Optical Design (Oxford University Press, New York 1997).
  26. M. Herzberger, Modern Geometrical Optics (Interscience Publishers, Inc., New York 1958).
  27. S. Reichelt and H. Zappe, “Design of spherically corrected, achromatic variable-focus liquid lenses,” Opt. Express 15(21), 14146–14154 (2007). [CrossRef] [PubMed]
  28. R. Peng, J. Chen, Ch. Zhu, and S. Zhuang, “Design of a zoom lens without motorized optical elements,” Opt. Express 15(11), 6664–6669 (2007). [CrossRef] [PubMed]
  29. Z. Wang, Y. Xu, and Y. Zhao, “Aberration analyses of liquid zooming lenses without moving parts,” Opt. Commun. 275(1), 22–26 (2007). [CrossRef]
  30. M. Herzberger, “Replacing a thin lens by a thick lens,” J. Opt. Soc. Am. 34(2), 114–115 (1944). [CrossRef]
  31. K. Rektorys, Survey of Applicable Mathematics. (Kluwer Academic Publisher, Dodrecht 1994)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited