OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9048–9054

Optimization of enhanced absorption in 3D-woodpile metallic photonic crystals

Md Muntasir Hossain, Gengyan Chen, Baohua Jia, Xue-Hua Wang, and Min Gu  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 9048-9054 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (947 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a detailed theoretical analysis which reveals a useful insight to understand the resonant dissipative behavior of 3D woodpile metallic photonic crystals in the spectral response. We observe that a small amount of structural parameter modifications can induce great flexibility to alter the properties of the absorption resonance with even an extremely narrow band width of ~13 nm. Analyzing the dispersive properties of the 3D woodpile metallic photonic crystals and performing thorough numerical simulations for the finite number of layers we found that the magnitude, band width, and tunability of enhanced absorption can be easily optimized, which can be of significance to design an efficient photonic crystal thermal emitter.

© 2010 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: March 12, 2010
Revised Manuscript: April 6, 2010
Manuscript Accepted: April 12, 2010
Published: April 15, 2010

Md Muntasir Hossain, Gengyan Chen, Baohua Jia, Xue-Hua Wang, and Min Gu, "Optimization of enhanced absorption in 
3D-woodpile metallic photonic crystals," Opt. Express 18, 9048-9054 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002). [CrossRef] [PubMed]
  2. A. Moroz, “Three-dimensional complete photonic-band-gap structures in the visible,” Phys. Rev. Lett. 83(25), 5274–5277 (1999). [CrossRef]
  3. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000). [CrossRef]
  4. C.-Y. Kuo and S.-Y. Lu, “Opaline metallic photonic crystals possessing complete photonic band gaps in optical regime,” Appl. Phys. Lett. 92(12), 121919 (2008). [CrossRef]
  5. T. A. Walsh, J. A. Bur, Y.-S. Kim, T.-M. Lu, and S.-Y. Lin, “High-temperature metal coating for modification of photonic band edge position,” J. Opt. Soc. Am. B 26(7), 1450 (2009). [CrossRef]
  6. V. Mizeikis, S. Juodkazis, R. Tarozaite, J. Juodkazyte, K. Juodkazis, and H. Misawa, “Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region,” Opt. Express 15(13), 8454–8464 (2007). [CrossRef] [PubMed]
  7. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003). [CrossRef]
  8. S. Y. Lin, J. G. Fleming, and I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83(4), 593–595 (2003). [CrossRef]
  9. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000). [CrossRef]
  10. C. Luo, S. Johnson, J. Joannopoulos, and J. Pendry, “Negative refraction without negative index in metallic photonic crystals,” Opt. Express 11(7), 746–754 (2003). [CrossRef] [PubMed]
  11. A. Mahmoudi, A. Semnani, R. Alizadeh, and R. Adeli, “Negative refraction of a three-dimensional metallic photonic crystal,” Eur. Phys. J. Appl. Phys. 39(1), 27–32 (2007). [CrossRef]
  12. G. von Freymann, S. John, M. Schulz-Dobrick, E. Vekris, N. Tetreault, S. Wong, V. Kitaev, and G. A. Ozin, “Tungsten inverse opals: The influence of absorption on the photonic band structure in the visible spectral region,” Appl. Phys. Lett. 84(2), 224 (2004). [CrossRef]
  13. J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. 19(6), 791–794 (2007). [CrossRef]
  14. Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003). [CrossRef]
  15. H. Y. Sang, Z. Y. Li, and B. Y. Gu, “Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066611 (2004). [CrossRef]
  16. D. Sullivan, Electromagnetic simulation using the FDTD method (IEEE Press New York, 2000).
  17. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn (Norwood, MA: Artech House, 2005).
  18. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008). [CrossRef] [PubMed]
  19. S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007). [CrossRef] [PubMed]
  20. A. A. Krokhin and P. Halevi, “Influence of weak dissipation on the photonic band structure of periodic composites,” Phys. Rev. B 53(3), 1205–1214 (1996). [CrossRef]
  21. J.-H. Lee, J. C. W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, “Polarization engineering of thermal radiation using metallic photonic crystals,” Adv. Mater. 20(17), 3244–3247 (2008). [CrossRef]
  22. M. Chen, S.-Y. Lin, H.-C. Chang, and A. S. P. Chang, “Physical origin of the resonant mode deep inside the stop band of a metallodielectric photonic crystal,” Phys. Rev. B 78(8), 085110 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 4
Fig. 3 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited