OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9088–9097

A suspended core nanofiber with unprecedented large diameter ratio of holey region to core

Meisong Liao, Chitrarekha Chaudhari, Xin Yan, Guanshi Qin, Chihiro Kito, Takenobu Suzuki, and Yasutake Ohishi  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 9088-9097 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1823 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For a suspended core nanofiber, the holey region is expected to be as large as possible to propagate the light at wavelengths as long as possible. Additionally, a large holey region is significant for its applications in sensors. However, the fabrication of nanofiber with large holey region is still a challenge so far. In this paper a method, which involves pumping positive pressure of nitrogen gas in both the cane fabrication and fiber-drawing processes, was proposed. A suspended core nanofiber, with a core diameter of around 480 nm and an unprecedented diameter ratio of holey region to core (DRHC) of at least 62, was fabricated in the length of several hundred meters. Owing to the large holey region, the confinement loss of the suspended core nanofiber is insignificant when the wavelength of light propagated in it is 1700 nm. For this fabrication technique, the nanowire length, fabrication efficiency, and the uniformity in the diameter are much superior to those of the nanowires fabricated in other ways. Finally, single mode third harmonic generation was observed by this nanofiber under the pump of a 1557 nm femtosecond fiber laser. This work shows the prospect of fabrication of nanostructured waveguide in glass materials by an inflation technique.

© 2010 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(060.4005) Fiber optics and optical communications : Microstructured fibers
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 1, 2010
Revised Manuscript: March 17, 2010
Manuscript Accepted: March 18, 2010
Published: April 15, 2010

Meisong Liao, Chitrarekha Chaudhari, Xin Yan, Guanshi Qin, Chihiro Kito, Takenobu Suzuki, and Yasutake Ohishi, "A suspended core nanofiber with unprecedented large diameter ratio of holey region to core," Opt. Express 18, 9088-9097 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef] [PubMed]
  2. D. Appell, “Nanotechnology. Wired for success,” Nature 419(6907), 553–555 (2002). [CrossRef] [PubMed]
  3. L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005). [CrossRef] [PubMed]
  4. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon. 1(1), 162–235 (2009). [CrossRef]
  5. X. Xing, Y. Wang, and B. Li, “Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate),” Opt. Express 16(14), 10815–10822 (2008). [CrossRef] [PubMed]
  6. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004). [CrossRef] [PubMed]
  7. Y. Lize, E. Magi, V. Taeed, J. Bolger, and B. J. Eggleton, “Nanostructure silica photonic wires,” in Frontiers in Optics, OSA Technical Digest Series (Optical Society of America, 2004), paper FWO2.
  8. L. Tong and E. Mazur, ““Glass nanofibers for micro- and nano-scale photonic devices.” J. Non-Crystal,” Solids 354, 1240–1244 (2008).
  9. N. A. Wolchover, F. Luan, A. K. George, J. C. Knight, and F. G. Omenetto, “High nonlinearity glass photonic crystal nanowires,” Opt. Express 15(3), 829–833 (2007). [CrossRef] [PubMed]
  10. D. I. Yeom, E. C. Mägi, M. R. Lamont, M. A. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008). [CrossRef] [PubMed]
  11. D. Li and Y. Xia, “Fabrication of titania nanofibers by electrospinning,” Nano Lett. 3(4), 555–560 (2003). [CrossRef]
  12. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006). [CrossRef] [PubMed]
  13. G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004). [CrossRef] [PubMed]
  14. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009). [CrossRef] [PubMed]
  15. W. Q. Zhang, V. S. Afshar, H. Ebendorff-Heidepriem, T. M. Monro, S. Afshar, V. H. Ebendorff-Heidepriem, and T. M Monro, “Record nonlinearity in optical fibre,” Electron. Lett. 44(25), 1453–1455 (2008). [CrossRef]
  16. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009). [CrossRef]
  17. G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterization,” Electron. Lett. 42(9), 517–518 (2006). [CrossRef]
  18. L. Xiao, M. D. W. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, “Tapered fibers embedded in silica aerogel,” Opt. Lett. 34(18), 2724–2726 (2009). [CrossRef] [PubMed]
  19. M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17(18), 15481–15490 (2009). [CrossRef] [PubMed]
  20. Y. K. Lizé, E. Mägi, V. Ta’eed, J. Bolger, P. Steinvurzel, and B. Eggleton, “Microstructured optical fiber photonic wires with subwavelength core diameter,” Opt. Express 12(14), 3209–3217 (2004). [CrossRef] [PubMed]
  21. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008). [CrossRef] [PubMed]
  22. C. Chaudhari, T. Suzuki, and Y. Ohishi, “Chalcogenide core photonic crystal fibers for zero chromatic dispersion in the C-Band,” OFC San Diego, 22–26 March 2009, OTuC4 (2009).
  23. H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, and H. Bartelt, “Microstructured indexguiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008). [CrossRef]
  24. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009). [CrossRef] [PubMed]
  25. M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express 17(24), 21608–21614 (2009). [CrossRef] [PubMed]
  26. S. Afshar V, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34(22), 3577–3579 (2009). [CrossRef] [PubMed]
  27. Z. Aleksei, “Multimode guided-wave non-3omega third-harmonic generation by ultrashort laser pulses,” J. Opt. Soc. Am. B 22(10), 2263–2269 (2005). [CrossRef]
  28. G. Genty, P. Kinsler, B. Kibler, and J. M. Dudley, “Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides,” Opt. Express 15(9), 5382–5387 (2007). [CrossRef] [PubMed]
  29. B. Kibler, R. Fischer, G. Genty, D. N. Neshev, and J. M. Dudley, “Simultaneous fs pulse spectral broadening and third harmonic generation in highly nonlinear fibre: experiments and simulations,” Appl. Phys. B 91(2), 349–352 (2008). [CrossRef]
  30. G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second, third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett. 35(1), 58–60 (2010). [CrossRef] [PubMed]
  31. F. Omenetto, A. Efimov, A. Taylor, J. Knight, W. Wadsworth, and P. Russell, “Polarization dependent harmonic generation in microstructured fibers,” Opt. Express 11(1), 61–67 (2003). [CrossRef] [PubMed]
  32. A. Bétourné, Y. Quiquempois, G. Bouwmans, and M. Douay, “Design of a photonic crystal fiber for phase-matched frequency doubling or tripling,” Opt. Express 16(18), 14255–14262 (2008). [CrossRef] [PubMed]
  33. K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46(9), 1429–1434 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited