OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9098–9106

1319 nm and 1338 nm dual-wavelength operation of LD end-pumped Nd:YAG ceramic laser

Lei Guo, Ruijun Lan, Hong Liu, Haohai Yu, Huaijin Zhang, Jiyang Wang, Dawei Hu, Shidong Zhuang, Lijuan Chen, Yongguang Zhao, Xinguang Xu, and Zhengping Wang  »View Author Affiliations


Optics Express, Vol. 18, Issue 9, pp. 9098-9106 (2010)
http://dx.doi.org/10.1364/OE.18.009098


View Full Text Article

Enhanced HTML    Acrobat PDF (799 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we demonstrate the efficient 1.3 um dual-wavelength operation of LD end-pumped Nd:YAG ceramic laser. With a plano-concave cavity, a maximum continuous-wave dual-wavelength output power of 5.92 W is obtained under an incident pump power of 20.5 W, giving a slope efficiency of 30.3% and an optical-optical conversion efficiency of 29.0%. With Co2+:LaMgAl11O19 crystal as the saturable absorber, the passively Q-switched dual-wavelength operation is achieved for the first time to our knowledge. The maximum passively Q-switched average output power is 226 mW, the minimum pulse width is 15 ns, and the highest pulse repetition rate is 133 kHz.

© 2010 OSA

OCIS Codes
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 5, 2010
Revised Manuscript: March 31, 2010
Manuscript Accepted: April 7, 2010
Published: April 15, 2010

Citation
Lei Guo, Ruijun Lan, Hong Liu, Haohai Yu, Huaijin Zhang, Jiyang Wang, Dawei Hu, Shidong Zhuang, Lijuan Chen, Yongguang Zhao, Xinguang Xu, and Zhengping Wang, "1319 nm and 1338 nm dual-wavelength operation of LD end-pumped Nd:YAG ceramic laser," Opt. Express 18, 9098-9106 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-9-9098


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008). [CrossRef]
  2. J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1–2), 220–225 (2002). [CrossRef]
  3. J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser,” Opt. Lett. 27(13), 1120–1122 (2002). [CrossRef]
  4. Z. P. Wang, H. Liu, J. Y. Wang, Y. H. Lv, Y. H. Sang, R. J. Lan, H. H. Yu, X. G. Xu, and Z. S. Shao, “Passively Q-switched dual-wavelength laser output of LD-end-pumped ceramic Nd:YAG laser,” Opt. Express 17(14), 12076–12081 (2009). [CrossRef] [PubMed]
  5. J. Marling, “1.05-1.44 um Tunability and Performance of the CW Nd3+:YAG Laser,” IEEE J. Quantum Electron. 14(1), 56–62 (1978). [CrossRef]
  6. T. Omatsu, A. Minassian, and M. J. Damzen, “Passive Q-switching of a diode-side-pumped Nd doped 1.3 um ceramic YAG bounce laser,” Opt. Commun. 282(24), 4784–4788 (2009). [CrossRef]
  7. M. Okida, M. Itoh, T. Yatagai, H. Ogilvy, J. Piper, and T. Omatsu, “Heat generation in Nd doped vanadate crystals with 1.34 mum laser action,” Opt. Express 13(13), 4909–4915 (2005). [CrossRef] [PubMed]
  8. M. L. Rico, J. L. Valdes, J. Martinez-pastor, and J. Capmany, “Continuous-wave dual-wavelength operation at 1062 and 1338 nm in Nd3+:YAl3(BO3)4 and observation of yellow laser light generation at 592 nm by their self-sum-frequency-mixing,” Opt. Commun. 282(8), 1619–1621 (2009). [CrossRef]
  9. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5(7), 1412–1423 (1988). [CrossRef]
  10. R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34- mum Nd:YVO(4) microchip laser with semiconductor saturable-absorber mirrors,” Opt. Lett. 22(13), 991–993 (1997). [CrossRef] [PubMed]
  11. A. Li, S. C. Liu, K. W. Su, Y. L. Liao, S. C. Huang, Y. F. Chen, and K. F. Huang, “InGaAsP quantum-wells saturable absorber for diode-pumped passively Q-switched 1.3 um lasers,” Appl. Phys. B 84(3), 429–431 (2006). [CrossRef]
  12. A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG-a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B 67(5), 555–558 (1998). [CrossRef]
  13. F. Liu, J. He, B. Zhang, J. Xu, X. Dong, K. Yang, H. Xia, and H. Zhang, “Diode-pumped passively Q-switched Nd:LuVO4 laser at 1.34 microm with a V3+:YAG saturable absorber,” Opt. Express 16(16), 11759–11763 (2008). [CrossRef] [PubMed]
  14. H. T. Huang, J. L. He, C. H. Zuo, H. J. Zhang, J. Y. Wang, and H. T. Wang, “Co2+:LMA crystal as saturable absorber for a diode-pumped passively Q-switched Nd:YVO4 laser at 1342 nm,” Appl. Phys. B 89(2-3), 319–321 (2007). [CrossRef]
  15. P. Li, Y. Li, Y. Sun, X. Hou, H. Zhang, and J. Wang, “Passively Q-switched 1.34 mum Nd:YxGd(1-x)VO(4) laser with Co2+:LaMgAl(11)O(19) saturable absorber,” Opt. Express 14(17), 7730–7736 (2006). [CrossRef] [PubMed]
  16. H. Qi, X. Hou, Y. Li, Y. Sun, H. Zhang, and J. Wang, “Co2+:LaMgAl11O19 saturable absorber Q-switch for a 1.319 um Nd3+:YAG laser,” Opt. Laser Technol. 39(4), 724–727 (2007). [CrossRef]
  17. Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37(3), 462–468 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited