OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9107–9112

Casting method for producing low-loss chalcogenide microstructured optical fibers

Quentin Coulombier, Laurent Brilland, Patrick Houizot, Thierry Chartier, Thanh Nam N’Guyen, Frédéric Smektala, Gilles Renversez, Achille Monteville, David Méchin, Thierry Pain, Hervé Orain, Jean-Christophe Sangleboeuf, and Johann Trolès  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 9107-9112 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (780 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report significant advances in the fabrication of low loss chalcogenide microstructured optical fiber (MOF). This new method, consisting in molding the glass in a silica cast made of capillaries and capillary guides, allows the development of various designs of fibers, such as suspended core, large core or small core MOFs. After removing the cast in a hydrofluoric acid bath, the preform is drawn and the design is controlled using a system applying differential pressure in the holes. Fiber losses, which are the lowest recorded so far for selenium based MOFs, are equal to the material losses, meaning that the process has no effect on the glass quality.

© 2010 OSA

OCIS Codes
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 8, 2010
Revised Manuscript: March 15, 2010
Manuscript Accepted: March 16, 2010
Published: April 15, 2010

Quentin Coulombier, Laurent Brilland, Patrick Houizot, Thierry Chartier, Thanh Nam N’Guyen, Frédéric Smektala, Gilles Renversez, Achille Monteville, David Méchin, Thierry Pain, Hervé Orain, Jean-Christophe Sangleboeuf, and Johann Trolès, "Casting method for producing low-loss chalcogenide microstructured optical fibers," Opt. Express 18, 9107-9112 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008). [CrossRef]
  2. L. Petit, N. Carlie, K. Richardson, A. Humeau, S. Cherukulappurath, and G. Boudebs, “Nonlinear optical properties of glasses in the system Ge/Ga-Sb-S/Se,” Opt. Lett. 31(10), 1495–1497 (2006). [CrossRef] [PubMed]
  3. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000). [CrossRef]
  4. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. NGuyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mat. 8, 2148–2155 (2006).
  5. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006). [CrossRef] [PubMed]
  6. F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008). [CrossRef] [PubMed]
  7. F. Désévédavy, G. Renversez, J. Troles, L. Brilland, P. Houizot, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Te-As-Se glass microstructured optical fiber for the middle infrared,” Appl. Opt. 48(19), 3860–3865 (2009). [CrossRef] [PubMed]
  8. G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,” Opt. Lett. 28(12), 989–991 (2003). [CrossRef] [PubMed]
  9. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002). [CrossRef] [PubMed]
  10. C. V. M. Fridlund, “Darwin – The Infrared Space Interferometry Mission,” ESA Bull. 103, (2000).
  11. E. Austin, A. van Brakel, M. N. Petrovich, and D. J. Richardson, “Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell,” Sens. Actuators B Chem. 139(1), 30–34 (2009). [CrossRef]
  12. F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, P. Boussard, C. del, V. Nazabal, N. Thibaud, K. Le Pierres, G. Renversez, and B. Bureau, “CO2 Detection Using Microstructured Chalcogenide Fibers,” Sensor Letters 7, 745–749 (2009). [CrossRef]
  13. C. Fortier, J. Fatome, S. Pitois, F. Smektala, G. Millot, J. Troles, F. Desevedavy, P. Houizot, L. Brilland, and N. Traynor, “Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber,” Opt. Express 16(13), 9398–9404 (2008). [CrossRef] [PubMed]
  14. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  15. V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, R. Yinlan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quant. Electron. 12(3), 360–370 (2006). [CrossRef]
  16. L. Fu, M. Rochette, V. Ta’eed, D. Moss, and B. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13(19), 7637–7644 (2005). [CrossRef] [PubMed]
  17. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996). [CrossRef] [PubMed]
  18. M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express 17(24), 21608–21614 (2009). [CrossRef] [PubMed]
  19. L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres (Glass and Ceramic Materials for Photonics),” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008). [CrossRef]
  20. Y. Zhang, K. Li, L. Wang, L. Ren, W. Zhao, R. Miao, M. C. J. Large, and M. A. van Eijkelenborg, “Casting preforms for microstructured polymer optical fibre fabrication,” Opt. Express 14(12), 5541–5547 (2006). [CrossRef] [PubMed]
  21. Z. Guiyao, H. Zhiyun, L. Shuguang, and H. Lantian, “Fabrication of glass photonic crystal fibers with a die-cast process,” Appl. Opt. 45(18), 4433–4436 (2006). [CrossRef] [PubMed]
  22. D. Ležal, J. Pedlíková, J. Gurovič, and R. Vogt, “The preparation of chalcogenide glasses in chlorine reactive atmosphere,” Ceramics Silikaty 40 (1996).
  23. M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-Purity Glasses Based on Arsenic Chalcogenides,” J. Optoelectron. Adv. Mat. 3, 341–349 (2001).
  24. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999). [CrossRef]
  25. E. Thomson, “The mechanical, thermal and optical properties of fused silica,” J. Franklin Inst. 200(3), 313–326 (1925). [CrossRef]
  26. E. Guillevic, X. Zhang, T. Pain, L. Calvez, J.-L. Adam, J. Lucas, M. Guilloux-Viry, S. Ollivier, and G. Gadret, “Optimization of chalcogenide glass in the As-Se-S system for automotive applications,” Opt. Mater. 31(11), 1688–1692 (2009). [CrossRef]
  27. G. Renversez, F. Bordas, and B. T. Kuhlmey, “Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size,” Opt. Lett. 30(11), 1264–1266 (2005). [CrossRef] [PubMed]
  28. J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Integrated Opt. 28(1), 11–26 (2009). [CrossRef]
  29. K. Ogusu, Y. Hosokawa, S. Maeda, M. Minakata, and H. Li, “Photo-oxidation of As2Se3, Ag-As2Se3, and Cu-As2Se3 chalcogenide films,” J. Non-Cryst. Solids 351(37-39), 3132–3138 (2005). [CrossRef]
  30. K. Ogusu, T. Hagihara, Y. Hosokawa, and M. Minakata, “Dependence of photo-oxidation on Ag(Cu)-content in Ag(Cu)-As2Se3 films,” J. Non-Cryst. Solids 353(11-12), 1216–1220 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited