OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9113–9118

Infrared laser induced lateral photovoltaic effect observed in Cu2O nanoscale film

Liang Du and Hui Wang  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 9113-9118 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (861 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The large infrared lateral photovoltaic effect (LPE) based on semiconductor structures has been a challenge for a long time because the light in this region is hard to be absorbed. In this study, we report an unusual infrared laser induced LPE observed in sputtered Cu2O thin films. The maximum open-circuit lateral photovoltage can reach up to a remarkable value of 30.6mV under irradiation of Ti: Sapphire laser emitting 100 fs pulses at 2000 nm with pulse energy of 50 μJ. Temperature gradient induced by infrared laser is introduced to interpret this infrared induced LPV effect. The high position sensitivity reaching 15.3mV/mm and easier fabrication techniques suggests this oxidized film a potential candidate for the novel infrared photodetectors.

© 2010 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(040.5350) Detectors : Photovoltaic
(310.6845) Thin films : Thin film devices and applications

ToC Category:

Original Manuscript: February 16, 2010
Revised Manuscript: March 22, 2010
Manuscript Accepted: March 31, 2010
Published: April 15, 2010

Liang Du and Hui Wang, "Infrared laser induced lateral photovoltaic effect observed in Cu2O nanoscale film," Opt. Express 18, 9113-9118 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. T. Wallmark, “A new semiconductor photocell using lateral photoeffect,” Proceedings of the Institute of Radio Engineers (IRE) 45(4), 474–483 (1957) (IRE).
  2. B. F. Levine, R. H. Willens, C. G. Bethea, and D. Brasen, “Lateral photoeffect in thin amorphous superlattice films of Si and Ti grown on a Si substrate,” Appl. Phys. Lett. 49(22), 1537–1539 (1986). [CrossRef]
  3. J. Henry and J. Livingstone, “Thin-film amorphous silicon position-sensitive detectors,” Adv. Mater. 13(12–13), 1022–1026 (2001). [CrossRef]
  4. K. Zhao, K. Jin, H. Lu, Y. Huang, Q. Zhou, M. He, Z. Chen, Y. Zhou, and G. Yang, “Transient lateral photovoltaic effect in p-n heterojunctions of La0.7Sr0.3MnO3 and Si,” Appl. Phys. Lett. 88(14), 141914 (2006). [CrossRef]
  5. D. Kabra, T. B. Singh, and K. S. Narayan, “Semiconducting-polymer-based position-sensitive detectors,” Appl. Phys. Lett. 85(21), 5073–5075 (2004). [CrossRef]
  6. J. Henry, and J. Livingstone, “A comparison of layered metal-semiconductor optical position sensitive detectors,” in Proceedings of IEEE Sensors (IEEE, 2002), pp. 836–840.
  7. N. Tabatabaie, M. H. Meynadier, R. E. Nahory, J. P. Harbison, and L. T. Florez, “Large lateral photovoltaic effect in modulation-doped AlGaAs/GaAs heterostructures,” Appl. Phys. Lett. 55(8), 792–794 (1989). [CrossRef]
  8. J. Cárabe, J. J. Gandia, N. Gonzalez, E. Galiano, and M. T. Gutierrez, “A simple amorphous-silicon photodetector for two-dimensional position sensing,” Appl. Phys. Lett. 69(22), 3408–3410 (1996). [CrossRef]
  9. S. Salvatori, G. Mazzeo, and G. Conte, “Voltage division position sensitive detectors based on photoconductive materials; Part I: Principle of operation,” IEEE Sens. J. 8(2), 188–193 (2008). [CrossRef]
  10. D. Kabra, S. Shriram, N. S. Vidhyadhiraja, and K. S. Narayan, “Charge carrier dynamics in organic semiconductors by position dependent optical probing,” J. Appl. Phys. 101(6), 064510–064517 (2007). [CrossRef]
  11. J. Henry and J. Livingstone, “Improved position sensitive detectors using high resistivity substrates,” J. Phys. D Appl. Phys. 41(16), 165106 (2008). [CrossRef]
  12. J. Henry, and J. Livingstone, “High sensitivity optical position sensitive detectors fabricated from high resistivity substrates,” Proc. SPIE 7003, 70030K (2008).
  13. J. Henry and J. Livingstone, “Aging effects of Schottky barrier position sensitive detectors,” IEEE Sens. J. 6(6), 1557–1563 (2006). [CrossRef]
  14. J. Henry and J. Livingstone, “A comparison of Schottky barrier position-sensitive detectors as a function of light wavelength,” IEEE Sens. J. 3(4), 519–524 (2003). [CrossRef]
  15. J. Henry and J. Livingstone, “A comparison of layered metal-semiconductor optical position sensitive detectors,” IEEE Sens. J. 2(4), 372–376 (2002). [CrossRef]
  16. D. W. Boeringer and R. Tsu, “Lateral photovoltaic effect in porous silicon,” Appl. Phys. Lett. 65(18), 2332–2334 (1994). [CrossRef]
  17. E. Fortunato, G. Lavareda, R. Martins, F. Soares, and L. Fernandes, “Large-area 1D thin-film position-sensitive detector with high detection resolution,” Sens. Actuators A Phys. 51(2–3), 135–142 (1996). [CrossRef]
  18. S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “The Co-film-thickness dependent lateral photoeffect in Co-SiO2-Si metal-oxide-semiconductor structures,” Opt. Express 16(6), 3798–3806 (2008). [CrossRef] [PubMed]
  19. S. Q. Xiao, H. Wang, Z. C. Zhao, and Y. X. Xia, “Large lateral photoeffect observed in metal-semiconductor junctions of CoxMnyO films and Si,” J. Phys. D Appl. Phys. 40(18), 5580–5583 (2007). [CrossRef]
  20. C. Q. Yu, H. Wang, and Y. X. Xia, “Giant lateral photovoltaic effect observed in TiO2 dusted metal-semiconductor structure of Ti/TiO2/Si,” Appl. Phys. Lett. 95(14), 141112–141113 (2009). [CrossRef]
  21. C. Q. Yu, H. Wang, S. Q. Xiao, and Y. X. Xia, “Direct observation of lateral photovoltaic effect in nano-metal-films,” Opt. Express 17(24), 21712–21722 (2009). [CrossRef] [PubMed]
  22. M. Jörger, E. Tsitsishvili, T. Fleck, and C. Klingshirn, “Infrared absorption by excitons in Cu2O,” Phys. Status Solidi B 238(3), 470–473 (2003). [CrossRef]
  23. M. Jörger, T. Fleck, C. Klingshirn, and R. von Baltz, “Midinfrared properties of cuprous oxide: high-order lattice vibrations and intraexcitonic transitions of the 1s paraexciton,” Phys. Rev. B 71(23), 235210 (2005). [CrossRef]
  24. R. Huber, B. A. Schmid, Y. R. Shen, D. S. Chemla, and R. A. Kaindl, “Stimulated terahertz emission from intraexcitonic transitions in Cu2O,” Phys. Rev. Lett. 96(1), 017402 (2006). [CrossRef] [PubMed]
  25. A. R. Rastkar, A. R. Niknam, and B. Shokri, “Characterization of copper oxide nanolayers deposited by direct current magnetron sputtering,” Thin Solid Films 517(18), 5464–5467 (2009). [CrossRef]
  26. J. H. Hsieh, P. W. Kuo, K. C. Peng, S. J. Liu, J. D. Hsueh, and S. C. Chang, “Opto-electronic properties of sputter-deposited Cu2O films treated with rapid thermal annealing,” Thin Solid Films 516(16), 5449–5453 (2008). [CrossRef]
  27. J. Henry and J. Livingstone, “Optimizing the response of Schottky barrier position sensitive detectors,” J. Phys. D Appl. Phys. 37(22), 3180–3184 (2004). [CrossRef]
  28. R. Martins and E. Fortunato, “Role of the resistive layer on the performances of 2D a-Si:H thin film position sensitive detectors,” Thin Solid Films 337(1–2), 158–162 (1999). [CrossRef]
  29. E. Fortunato, G. Lavareda, M. Vieira, and R. Martins, “Thin film position sensitive detector based on amorphous silicon p–i–n diode,” Rev. Sci. Instrum. 65(12), 3784–3786 (1994). [CrossRef]
  30. A. P. Young and C. M. Schwartz, “Electrical conductivity and thermoelectric power of Cu2O,” J. Phys. Chem. Solids 30(2), 249–252 (1969). [CrossRef]
  31. S. Leinss, T. Kampfrath, K. Volkmann, M. Wolf, J. T. Steiner, M. Kira, S. W. Koch, A. Leitenstorfer, and R. Huber, “Terahertz coherent control of optically dark paraexcitons in Cu2O,” Phys. Rev. Lett. 101(24), 246401 (2008). [CrossRef]
  32. K.-J. Jin, K. Zhao, H.-B. Lu, L. Liao, and G.-Z. Yang, “Dember effect induced photovoltage in perovskite p-n heterojunctions,” Appl. Phys. Lett. 91(8), 081906 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited