OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9181–9191

Scatterer size-based analysis of optical coherence tomography images using spectral estimation techniques

Andreas Kartakoullis, Evgenia Bousi, and Costas Pitris  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 9181-9191 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1475 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel spectral analysis technique of OCT images is demonstrated in this paper for classification and scatterer size estimation. It is based on SOCT autoregressive spectral estimation techniques and statistical analysis. Two different statistical analysis methods were applied to OCT images acquired from tissue phantoms, the first method required prior information on the sample for variance analysis of the spectral content. The second method used k-means clustering without prior information for the sample. The results are very encouraging and indicate that the spectral content of OCT signals can be used to estimate scatterer size and to classify dissimilar areas in phantoms and tissues with sensitivity and specificity of more than 90%.

© 2010 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(140.3600) Lasers and laser optics : Lasers, tunable
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(290.0290) Scattering : Scattering
(290.4020) Scattering : Mie theory

ToC Category:
Imaging Systems

Original Manuscript: February 17, 2010
Revised Manuscript: April 7, 2010
Manuscript Accepted: April 12, 2010
Published: April 16, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Andreas Kartakoullis, Evgenia Bousi, and Costas Pitris, "Scatterer size-based analysis of optical coherence tomography images using spectral estimation techniques," Opt. Express 18, 9181-9191 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Stephens, and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300(5616), 82–86 (2003). [CrossRef] [PubMed]
  2. H. C. V. de Hulst, Light Scattering by Small Particles (Dover Publications, New York, 1981).
  3. C. Bohren, and D. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Science Paperback Series (John Wiley and Sons, New York, 1998).
  4. J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41(3), 369–382 (1996). [CrossRef] [PubMed]
  5. L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. Crawford, and M. Feld, “Observation of periodic fine structure in reflectance from biological tissue a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998). [CrossRef]
  6. V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. Boone, R. Dasari, and M. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE Sel. Top Quantum Electron. 7(6), 887–893 (2001). [CrossRef]
  7. M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000). [CrossRef] [PubMed]
  8. M. S. Feld, V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, and J. Van Dam, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000). [CrossRef] [PubMed]
  9. A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28(14), 1230–1232 (2003). [CrossRef] [PubMed]
  10. A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, “Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A 19(4), 737–744 (2002). [CrossRef]
  11. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000). [CrossRef]
  12. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett. 28(16), 1436–1438 (2003). [CrossRef] [PubMed]
  13. C. Xu, J. Ye, D. L. Marks, and S. A. Boppart, “Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography,” Opt. Lett. 29(14), 1647–1649 (2004). [CrossRef] [PubMed]
  14. B. Hermann, K. Bizheva, A. Unterhuber, B. Povazay, H. Sattmann, L. Schmetterer, A. Fercher, and W. Drexler, “Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography,” Opt. Express 12(8), 1677–1688 (2004). [CrossRef] [PubMed]
  15. D. Adler, T. Ko, P. Herz, and J. Fujimoto, “Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation,” Opt. Express 12(22), 5487–5501 (2004). [CrossRef] [PubMed]
  16. C. Xu, P. Carney, and S. Boppart, “Wavelength-dependent scattering in spectroscopic optical coherence tomography,” Opt. Express 13(14), 5450–5462 (2005). [CrossRef] [PubMed]
  17. C. Xu, P. S. Carney, W. Tan, and S. A. Boppart, “Light-scattering spectroscopic optical coherence tomography for differentiating cells in 3D cell culture,” Proc. SPIE 6088(608804), 1–10 (2006).
  18. I. V. Turchin, E. A. Sergeeva, L. S. Dolin, V. A. Kamensky, N. M. Shakhova, and R. Richards-Kortum, “Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies,” J. Biomed. Opt. 10(6), 064024 (2005). [CrossRef]
  19. X. Qi, M. V. Sivak, G. Isenberg, J. E. Willis, and A. M. Rollins, “Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” J. Biomed. Opt. 11(4), 044010 (2006). [CrossRef] [PubMed]
  20. C. A. Lingley-Papadopoulos, M. H. Loew, M. J. Manyak, and J. M. Zara, “Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis,” J. Biomed. Opt. 13(2), 024003 (2008). [CrossRef] [PubMed]
  21. A. Dunn, and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2(4), 898–905 (1996). [CrossRef]
  22. F. Bazant-Hegemark, and N. Stone, “Near real-time classification of optical coherence tomography data using principal components fed linear discriminant analysis,” J. Biomed. Opt. 13(3), 034002 (2008). [CrossRef] [PubMed]
  23. C. Pitris, A. Kartakoullis, and E. Bousi, “AM-FM techniques in the analysis of optical coherence tomography signals,” J. Biophoton. 2(6–7), 364–369 (2009). [CrossRef]
  24. C. Xu, F. Kamalabadi, and S. A. Boppart, “Comparative performance analysis of time-frequency distributions for spectroscopic optical coherence tomography,” Appl. Opt. 44(10), 1813–1822 (2005). [CrossRef] [PubMed]
  25. P. Chaturvedi, and M. F. Insana, “Autoregressive spectral estimation in ultrasonic scatterer size imaging,” Ultrason. Imaging 18(1), 10–24 (1996). [CrossRef] [PubMed]
  26. K. Wear, R. Wagner, and B. Garra, “A comparison of autoregressive spectral estimation algorithms and order determination methods in ultrasonic tissue characterization,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 42(4), 709–716 (1995). [CrossRef]
  27. J. Proakis, and D. Manolakis, Digital Signal Processing, Principles, Algorithms and Applications (Prentice Hall, 2006).
  28. P. Stoica, and R. L. Moses, Introduction to Spectral Analysis (Prentice Hall, 1997).
  29. R. N. Graf, and A. Wax, “Temporal coherence and time–frequency distributions in spectroscopic optical coherence tomography,” J. Opt. Soc. Am. A 24(8), 2186–2195 (2007). [CrossRef]
  30. I. T. Jolliffe, Principal Component Analysis, 2nd ed. (Springer-Verlag, 2002).
  31. J. B. MacQueen, “Some Methods for classification and Analysis of Multivariate Observations,” Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press 1, 281–297 (1967).
  32. A. M. Zysk, and S. A. Boppart, “Computational methods for analysis of human breast tumor tissue in optical coherence tomography images,” J. Biomed. Opt. 11(5), 054015 (2006). [CrossRef] [PubMed]
  33. C. L. Tsai, J. C. Chen, and W. J. Wang, “Near-infrared Absorption Property of Biological Soft Tissue Constituents,” J. Med. Bio. Eng. 21(1), 7–14 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited