OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9213–9219

Gain analysis of optically-pumped Si nanocrystal waveguide amplifiers on silicon substrate

Gong-Ru Lin, Cheng-Wei Lian, Chung-Lun Wu, and Yung-Hsiang Lin  »View Author Affiliations


Optics Express, Vol. 18, Issue 9, pp. 9213-9219 (2010)
http://dx.doi.org/10.1364/OE.18.009213


View Full Text Article

Enhanced HTML    Acrobat PDF (1695 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The SiO2/SiOx/SiO2 strip-loaded waveguide on Si substrate with buried Si nanocrystals (Si-ncs) in SiOx layer is demonstrated to show the Si-nc dependent optical gain. The amplified spontaneous emission (ASE) spectrum at 750-850 nm is observed with central wavelength of 805 nm and 3dB spectral linewidth of 140 nm. The optical net modal gain and loss coefficients of 85.7 cm−1 and 21 cm−1, respectively, are determined from the waveguide length dependent ASE intensity. By attenuating 785-nm laser diode signal to inject the pumped SiO2/SiOx/SiO2 strip-loaded waveguide, a small-signal power gain of 13.5 decibel (dB) is obtained. Increasing the laser diode power shows a significantly reduced power gain with a saturated output power due to the finite density of the optically pumped Si-ncs. The fitting of power-dependent gain with a gain-saturated amplifier model reveals a peak gain of 35 dB and a saturation power of 1.1 nW for the SiO2/SiOx:Si-nc/SiO2/Si strip-loaded waveguide. Similar output saturation is also observed with increasing pumping power. With the presence of optical gain in the optically pumped Si-ncs, the intended application will be the monolithic integration of the Si-nc based optical waveguide amplifier with the other on-board photonic integrated circuits for the future optical interconnect communication.

© 2010 OSA

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(140.4480) Lasers and laser optics : Optical amplifiers
(230.7370) Optical devices : Waveguides
(160.4236) Materials : Nanomaterials

ToC Category:
Optical Devices

History
Original Manuscript: February 26, 2010
Revised Manuscript: March 15, 2010
Manuscript Accepted: March 15, 2010
Published: April 16, 2010

Citation
Gong-Ru Lin, Cheng-Wei Lian, Chung-Lun Wu, and Yung-Hsiang Lin, "Gain analysis of optically-pumped Si nanocrystal waveguide amplifiers on silicon substrate," Opt. Express 18, 9213-9219 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-9-9213


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. T. Canham, “Si quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990). [CrossRef]
  2. Y. Osaka, K. Tsunetomo, F. Toyomura, H. Myoren, and K. Kohno, “Visible photoluminescence from Si microcrystals embedded in SiO2 glass films,” Jpn. J. Appl. Phys. 31(Part 2, No. 3B), L365–L366 (1992). [CrossRef]
  3. T. Shimizu-Iwayama, K. Fujita, S. Nakao, K. Saitoh, T. Fujita, and N. Itoh, “Visible photoluminescence in Si+-implanted silica glass,” J. Appl. Phys. 75(12), 7779–7783 (1994). [CrossRef]
  4. P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli, and M. Guzzi, “Room-temperature visible luminescence from silicon nanocrystals in silicon implanted SiO2 layers,” Appl. Phys. Lett. 66(7), 851–853 (1995). [CrossRef]
  5. G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002). [CrossRef]
  6. S. Takeoka, M. Fujii, and S. Hayashi, “Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime,” Phys. Rev. B 62(24), 16820–16825 (2000). [CrossRef]
  7. L. Dal Negro, M. Cazzanelli, N. Daldosso, Z. Gaburroa, L. Pavesi, F. Priolo, D. Pacifici, G. Franzò, and F. Iacona, “Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals,” Physica E 16(3-4), 297–308 (2003). [CrossRef]
  8. L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzò, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82(26), 4636–4638 (2003). [CrossRef]
  9. G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou, and Y.-L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” J. Appl. Phys. 97(9), 094306 (2005). [CrossRef]
  10. G.-R. Lin, C.-J. Lin, and H.-C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007). [CrossRef]
  11. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000). [CrossRef] [PubMed]
  12. M. Cazzanelli, D. Navarro-Urriós, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gösele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96(6), 3164–3171 (2004). [CrossRef]
  13. P. M. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. G. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27(5), 745–749 (2005). [CrossRef]
  14. K. L. Shaklee and R. F. Leheny, “Direct Determination of Optical Gain in Semiconductor Crystals,” Appl. Phys. Lett. 18(11), 475–477 (1971). [CrossRef]
  15. J. Valenta, I. Pelant, and J. Linnros, “Waveguiding effects in the measurement of optical gain in a layer of Si nanocrystals,” Appl. Phys. Lett. 81(8), 1396–1398 (2002). [CrossRef]
  16. K. Luterová, M. Cazzanelli, J.-P. Likforman, D. Navarro, J. Valenta, T. Ostatnický, K. Dohnalová, S. Cheylan, P. Gilliot, B. Hönerlage, L. Pavesi, and I. Pelant, “Optical gain in nanocrystalline silicon: comparison of planar waveguide geometry with a non-waveguiding ensemble of nanocrystals,” Opt. Mater. 27(5), 750–755 (2005). [CrossRef]
  17. G. P. Agrawal, Fiber-Optic Communication System, (John Willy & Sons, New York, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited