OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9220–9228

Fidelity optimization for aberration-tolerant hybrid imaging systems

Tom Vettenburg, Nicholas Bustin, and Andrew R. Harvey  »View Author Affiliations


Optics Express, Vol. 18, Issue 9, pp. 9220-9228 (2010)
http://dx.doi.org/10.1364/OE.18.009220


View Full Text Article

Enhanced HTML    Acrobat PDF (1130 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Several phase-modulation functions have been reported to decrease the aberration variance of the modulation-transfer-function (MTF) in aberration-tolerant hybrid imaging systems. The choice of this phase-modulation function is crucial for optimization of the overall system performance. To prevent a significant loss in signal-to-noise ratio, it is common to enforce restorability constraints on the MTF, requiring trade of aberration-tolerance and noise-gain. Instead of optimizing specific MTF characteristics, we directly minimize the expected imaging-error of the joint design. This method is used to compare commonly used phase-modulation functions: the antisymmetric generalized cubic polynomial and fourth-degree rotational symmetric phase-modulation. The analysis shows how optimal imaging performance is obtained using moderate phase-modulation, and more importantly, the relative merits of the above functions.

© 2010 OSA

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(100.3020) Image processing : Image reconstruction-restoration
(110.0110) Imaging systems : Imaging systems
(110.1758) Imaging systems : Computational imaging

ToC Category:
Imaging Systems

History
Original Manuscript: March 11, 2010
Revised Manuscript: April 9, 2010
Manuscript Accepted: April 9, 2010
Published: April 16, 2010

Citation
Tom Vettenburg, Nicholas Bustin, and Andrew R. Harvey, "Fidelity optimization for aberration-tolerant hybrid imaging systems," Opt. Express 18, 9220-9228 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-9-9220


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34(11), 1859–1866 (1995). [CrossRef] [PubMed]
  2. S. Mezouari and A. R. Harvey, “Combined amplitude and phase filters for increased tolerance to spherical aberration,” J. Mod. Opt. 50(11), 2213–2220 (2003).
  3. S. Mezouari and A. R. Harvey, “Phase pupil functions for reduction of defocus and spherical aberrations,” Opt. Lett. 28(10), 771–773 (2003). [CrossRef] [PubMed]
  4. S. Mezouari, G. Muyo, and A. R. Harvey, “Circularly symmetric phase filters for control of primary third-order aberrations: coma and astigmatism,” J. Opt. Soc. Am. A 23(5), 1058–1062 (2006). [CrossRef]
  5. K. S. Kubala, H. B. Wach, V. V. Chumachenko, and E. R. Dowski, “Increasing the depth of field in an LWIR system for improved object identification,” Proc. SPIE 5784, 146–156 (2005). [CrossRef]
  6. S. S. Sherif, W. T. Cathey, and E. R. Dowski, “Phase plate to extend the depth of field of incoherent hybrid imaging systems,” Appl. Opt. 43(13), 2709–2721 (2004). [CrossRef] [PubMed]
  7. Q. Yang, L. Liu, and J. Sun, “Optimized phase pupil masks for extended depth of field,” Opt. Commun. 272(1), 56–66 (2007). [CrossRef]
  8. N. Caron and Y. Sheng, “Polynomial phase masks for extending the depth of field of a microscope,” Appl. Opt. 47(22), E39–E43 (2008). [CrossRef] [PubMed]
  9. S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “Engineering the pupil phase to improve image quality,” Proc. SPIE 5108, 1–12 (2003). [CrossRef]
  10. S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended-focus, aberration-corrected imaging systems,” Proc. SPIE 5559, 335–345 (2004). [CrossRef]
  11. W. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett. 26(12), 875–877 (2001). [CrossRef] [PubMed]
  12. M. D. Robinson, G. Feng, and D. Stork, “Spherical coded imagers: improving lens speed, depth-of-field, and manufacturing yield through enhanced spherical aberration and compensating image processing,” Proc. SPIE 7429, 74290M (2009). [CrossRef]
  13. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004). [CrossRef] [PubMed]
  14. P. A. Jansson, Deconvolution of images and spectra (2nd ed.) (Ac. Press, Inc., Orlando, FL, USA, 1996).
  15. D. L. Ruderman and W. Bialek, “Statistics of natural images: Scaling in the woods,” Phys. Rev. Lett. 73(6), 814–817 (1994). [CrossRef] [PubMed]
  16. E. P. Simoncelli, “Statistical Modeling of Photographic Images,” in Handbook of Image and Video Processing(Ac. Press, 2005), pp. 431–441.
  17. A. van der Schaaf and J. H. van Hateren, “Modelling the power spectra of natural images: statistics and information,” Vision Res. 36(17), 2759–2770 (1996). [CrossRef] [PubMed]
  18. G. Muyo, A. Singh, M. Andersson, D. Huckridge, A. Wood, and A. R. Harvey, “Infrared imaging with a wavefront-coded singlet lens,” Opt. Express 17(23), 21118–21123 (2009). [CrossRef] [PubMed]
  19. M. Demenikov, E. Findlay, and A. R. Harvey, “Miniaturization of zoom lenses with a single moving element,” Opt. Express 17(8), 6118–6127 (2009). [CrossRef] [PubMed]
  20. J. Markham and J. A. Conchello, “Parametric blind deconvolution: a robust method for the simultaneous estimation of image and blur,” J. Opt. Soc. Am. A 16(10), 2377–2391 (1999). [CrossRef]
  21. Y. L. You and M. Kaveh, “Blind image restoration by anisotropic regularization,” IEEE Trans. Image Process. 8(3), 396–407 (1999). [CrossRef] [PubMed]
  22. M. Demenikov and A. R. Harvey, “A technique to remove image artefacts in optical systems with wavefront coding,” Proc. SPIE 7429, 74290 (2009). [CrossRef]
  23. G. Muyo and A. R. Harvey, “Decomposition of the optical transfer function: wavefront coding imaging systems,” Opt. Lett. 30(20), 2715–2717 (2005). [CrossRef] [PubMed]
  24. G. Muyo and A. R. Harvey, “The effect of detector sampling in wavefront-coded imaging systems,” J. Opt. A, Pure Appl. Opt. 11(5), 054002 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited