OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9286–9302

Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels

Sungsam Kang, Youngwoon Choi, Sooin Lim, Wookrae Kim, Jung-Ryul Kim, Jai-Hyung Lee, and Kyungwon An  »View Author Affiliations


Optics Express, Vol. 18, Issue 9, pp. 9286-9302 (2010)
http://dx.doi.org/10.1364/OE.18.009286


View Full Text Article

Acrobat PDF (1224 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Atom-cavity coupling constant is a key parameter in cavity quantum electrodynamics for describing the interaction between an atom and a quantized electromagnetic field in a cavity. This paper reports a novel way to tune the coupling constant continuously by inducing an averaging of the atomic dipole moment over degenerate magnetic sublevels with elliptic polarization of the cavity field. We present an analytic solution of the stationary-state density matrix for this system with consideration of F → F +1 hyperfine transition under a weak excitation condition. We rigorously show that the stationary-state emission spectra of this system can be approximated by that of a non-degenerate two-level atom with an effective coupling constant as a function of the elliptic angle of the cavity field only. A precise condition for this approximation is derived and its physical meaning is interpreted in terms of a population-averaged transition strength and its variance. Our results can be used to control the coupling constant in cavity quantum electrodynamics experiments with a degenerate two-level atom with magnetic sublevels. Possible applications of our results are discussed.

© 2010 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(270.5580) Quantum optics : Quantum electrodynamics
(300.6210) Spectroscopy : Spectroscopy, atomic

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: January 19, 2010
Revised Manuscript: February 15, 2010
Manuscript Accepted: April 16, 2010
Published: April 19, 2010

Citation
Sungsam Kang, Youngwoon Choi, Sooin Lim, Wookrae Kim, Jung-Ryul Kim, Jai-Hyung Lee, and Kyungwon An, "Continuous control of the coupling constant in an atom-cavity system by using elliptic polarization and magnetic sublevels," Opt. Express 18, 9286-9302 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-9-9286


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Ye, D.W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83, 4987-4990 (1999). [CrossRef]
  2. P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365-368 (2000). [CrossRef]
  3. A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon sources for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002). [CrossRef]
  4. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992-1994 (2004). [CrossRef]
  5. I. Schuster, A. Kubanek, A. Fuhrmanek, T. Puppe, P. W. H. Pinkse, K. Murr, and G. Rempe, “Nonlinear spectroscopy of photons bound to one atom,” Nature Phys. 4, 382-385 (2008). [CrossRef]
  6. M. Khudaverdyan, W. Alt, T. Kampschulte, S. Reick, A. Thobe, A. Widera, and D. Meschede, “Quantum jumps and spin dynamics of interacting atoms in a strongly coupled atom-cavity system,” Phys. Rev. Lett. 103, 123006 (2009). [CrossRef]
  7. . C. K. Law and J. H. Eberly, “Arbitrary control of a quantum electromagnetic field,” Phys. Rev. Lett. 76, 1055-1058 (1996). [CrossRef]
  8. T. Kato, Perturbation Theory for Linear Operators (Springer, New York, 1966).
  9. K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007). [CrossRef]
  10. M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, K. Schorner, A. Widera and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10, 073023 (2008). [CrossRef]
  11. . H. J. Carmichael, An Open Systems Approach to Quantum Optics (Springer, Berlin, 1993).
  12. A. V. Ta˘ıchenachev, A.M. Tuma˘ıkin, V. I. Yudin, and G. Nienhuis, “Steady state of atoms in a resonant field with elliptical polarization,” Phys. Rev. A 69, 033410 (2004). [CrossRef]
  13. H. J. Carmichael, R. J. Brecha, and P. R. Rice, “Quantum interference and collapse of the wavefunction in cavity QED,” Opt. Commun. 82, 73-79 (1991). [CrossRef]
  14. R. J. Brecha, P. R. Rice, and M. Xiao, “N two-level atoms in a driven optical cavity: Quantum dynamics of forward photon scattering for weak incident fields,” Phys. Rev. A 59, 2392-2417 (1999). [CrossRef]
  15. J. R. Morris, and B. W. Shore, “Reduction of degenerate two-level excitation to independent two-state systems,” Phys. Rev. A 27, 906-912 (1983). [CrossRef]
  16. G. Nienhuis, “Natural basis of magnetic substates for a radiative transition with arbitrary polarization,” Opt. Commun. 59353-356 (1986). [CrossRef]
  17. C. Dembowski, H. -D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, and A. Richter, “Experimental observation of the topological structure of exceptional points,” Phys. Rev. Lett. 86787-790 (2001). [CrossRef]
  18. D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57R2293-R2296 (1998). [CrossRef]
  19. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71013817 (2005). [CrossRef]
  20. J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001). [CrossRef]
  21. A. D. Boozer, R. Miller, T. E. Northup, A. Boca, and H. J. Kimble, “Optical pumping via incoherent Raman transitions,” Phys. Rev. A 76, 063401 (2007). [CrossRef]
  22. T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488-490 (2007). [CrossRef]
  23. D. Jacob, M. Vallet, F. Bretenaker, A. L. Floch, and M. Oger, “Supermirror phase anisotropy measurement,” Opt. Lett. 20, 671-673 (1995). [CrossRef]
  24. J. Y. Lee, H-W. Lee, J. W. Kim, Y. S. Yoo, and J. W. Hahn, “Measurement of ultralow supermirror birefringence by use of the polarimetric differential cavity ringdown technique,” Applied Optics 39, 1941-1945 (2000). [CrossRef]
  25. E. T. Jaynes, and F.W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89-109 (1963). [CrossRef]
  26. K. M. Birnbaum, A. S. Parkins, and H. J. Kimble, “Cavity QED with multiple hyperfine levels,” Phys. Rev. A 74, 063802 (2006). [CrossRef]
  27. A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, “An atom in an elliptically polarized resonant field: exact stationary solution for closed J →J + 1 transitions,” JETP 83, 949-961 (1996).
  28. A. M. Tumaikin and V. I. Yudin, “Coherent stationary states under the interaction of atoms with polarized resonant light in a magnetic field,” Sov. Phys. JETP 71, 43-47 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited