OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9303–9313

Waveguide coupled photodiode using reflector and metal coplanar waveguide for optical triplexing applications

Shih-Hsiang Hsu, Yung Chen, and Hui-Zhi You  »View Author Affiliations


Optics Express, Vol. 18, Issue 9, pp. 9303-9313 (2010)
http://dx.doi.org/10.1364/OE.18.009303


View Full Text Article

Enhanced HTML    Acrobat PDF (1367 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The monitoring photodiode is the key building block for an optical triplexer at wavelengths of 1310, 1490, and 1550 nanometers. The InGaAs/InP photodetectors were proposed and fabricated to be monolithically integrated with AlGaAs/GaAs optical waveguides using total internal reflection coupling. The metal coplanar waveguides on top of the polyimide planarization and passivation layer were then connected to illustrate the high speed monitoring functions. The full width half maximum of the temporal response and 3-dB bandwidth for the optical waveguide coupled photodiodes demonstrated 29.5 ps and 11 GHz, respectively. The bit error rate performance of this integrated photodiode at 10 Gbit/s with 27-1 long pseudo-random bit sequence NRZ input data also showed error-free operation.

© 2010 OSA

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.5160) Optical devices : Photodetectors
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

History
Original Manuscript: February 3, 2010
Revised Manuscript: March 12, 2010
Manuscript Accepted: April 7, 2010
Published: April 19, 2010

Citation
Shih-Hsiang Hsu, Yung Chen, and Hui-Zhi You, "Waveguide coupled photodiode using reflector and metal coplanar waveguide for optical triplexing applications," Opt. Express 18, 9303-9313 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-9-9303


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Lam, “Passive optical networks_ principles and practice”, Burlington, MA: Elsevier Inc., 2007, chapter 2.
  2. J. An, J. Li, J. Li, Y. Wu, and X. Hu, “Novel triplexing-filter design using silica-based direction coupler and an arrayed waveguide grating,” Opt. Eng. 48(1), 014601 (2009). [CrossRef]
  3. V. Jeřábek, I. Hüttel, V. Prajzler, K. Bušek, and P. Seliger, “Design and construction of a VHGT-attached WDM-type triplex transceiver module using polymer PLC hybrid integration technology,” Proc. SPIE 7138, 713814–1 (2008). [CrossRef]
  4. B. S. Rho, S. H. Hwang, J. W. Lim, G. W. Kim, C. H. Cho, and W.-J. Lee, “Intra-system optical interconnection module directly integrated on a polymeric optical waveguide,” Opt. Express 17(3), 1215–1221 (2009). [CrossRef] [PubMed]
  5. W.-J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric waveguide film with embedded mirror for multilayer optical circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009). [CrossRef]
  6. A. Umbach, “High-speed integrated photodetectors for 40 Gb/s applications,” Proc. SPIE 5246(1), 434–442 (2004). [CrossRef]
  7. S. M. Sze, and K. K. Ng, “Physics of semiconductor devices”, 3rd edition, Hoboken, New Jersey: John Wiley & Sons, Inc. 2007, Appendix F.
  8. I. Kaminow, and T. Li, “Optical fiber telecommunications”, IVA components, San Diego, California: Elsevier Science, 2002, chapter 16.
  9. J. C. Campbell, “Recent advances in telecommunications avalanche photodiodes,” J. Lightwave Technol. 25(1), 109–121 (2007). [CrossRef]
  10. D. E. Bossi, R. W. Ade, R. P. Basilica, and J. M. Berak, “Regrowth-free waveguide-integrated photode- tector with efficient total-internal-reflection coupling,” IEEE Photon. Technol. Lett. 5(2), 166–169 (1993). [CrossRef]
  11. J. V. Hryniewicz, Y. J. Chen, S. H. Hsu, C. H. Lee, and G. A. Porkolab, “Ultra-high vacuum chemically assisted ion beam system with a three grid ion source,” J. Vac. Sci. Technol. A 15(3), 616–621 (1997). [CrossRef]
  12. S. H. Hsu, O. King, F. G. Johnson, J. V. Hryniewicz, Y. J. Chen, and D. R. Stone, “InGaAs pin detector array integrated with AIGaAs/GaAs grating-demultiplexer by total internal reflector,” Electron. Lett. 35(15), 1248–1249 (1999). [CrossRef]
  13. J.-M. Liu, “Photonic devices”, Cambridge CB2 2RU, UK: Cambridge University Press, 2005, chapter 14.
  14. B. Stephen, Alexander, “Optical communication receiver design”, Bellingham, Washington, SPIE-The International Society for Optical Engineering, 1997, chapter 4.
  15. J. E. Bowers and C. A. Burrus, “Ultrawide-band long-wavelength p-i-n photodetectors,” J. Lightwave Technol. 5(10), 1339–1350 (1987). [CrossRef]
  16. G. A. Porkolab, Y. J. Chen, S. A. Tabatabaei, S. Agarwala, F. G. Johnson, O. King, M. Dagenais, R. E. Frizzell, W. T. Beard, and D. R. Stone, “Air-bridges, air-ramps, planarization, and encapsulation using pyrolytic photoresist in the fabrication on three-dimensional microstructures,” J. Vac. Sci. Technol. B 15(6), 1961–1965 (1997). [CrossRef]
  17. S. Kück, H. Hofer, M. Antonio, and L. Ordoñez, “Cryogenic radiometer-based high accurate measurement of Ge and InGaAs trap detector responsivity”, CLEO Conference, p. CTuV6, 2006.
  18. G. T. Reed, “Silicon photonics – the state of the art”, West Sussex, England: John Wiley & Sons Ltd, 2008, chapter 2.
  19. B. M. A. Rahman, S. S. A. Obayya, and H. A. El-Mikati, “Minimisation of modal birefringence in semiconductor optical guided-wave devices,” IEE Proc., Optoelectron. 147(3), 151–156 (2000). [CrossRef]
  20. T. Kimura, T. Kimura, E. Ishimura, F. Uesugi, M. Tsugami, K. Mizuguchi, and T. Murotani, “Improvement of InP crystal quality grown on GaAs substrates and device applications,” J. Cryst. Growth 107(1-4), 827–831 (1991). [CrossRef]
  21. D. M. Pozar, “Microwave engineering”, 2nd edition, New York: John Wiley & Sons, Inc. 1998, chapter 4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited