OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9324–9340

Simple all-optical FFT scheme enabling Tbit/s real-time signal processing

D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold  »View Author Affiliations


Optics Express, Vol. 18, Issue 9, pp. 9324-9340 (2010)
http://dx.doi.org/10.1364/OE.18.009324


View Full Text Article

Enhanced HTML    Acrobat PDF (2687 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A practical scheme to perform the fast Fourier transform in the optical domain is introduced. Optical real-time FFT signal processing is performed at speeds far beyond the limits of electronic digital processing, and with negligible energy consumption. To illustrate the power of the method we demonstrate an optical 400 Gbit/s OFDM receiver. It performs an optical real-time FFT on the consolidated OFDM data stream, thereby demultiplexing the signal into lower bit rate subcarrier tributaries, which can then be processed electronically.

© 2010 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(070.2025) Fourier optics and signal processing : Discrete optical signal processing

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 19, 2010
Revised Manuscript: April 2, 2010
Manuscript Accepted: April 15, 2010
Published: April 20, 2010

Citation
D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, "Simple all-optical FFT scheme enabling Tbit/s real-time signal processing," Opt. Express 18, 9324-9340 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-9-9324


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. E. Marhic, “Discrete Fourier transforms by single-mode star networks,” Opt. Lett. 12(1), 63–65 (1987). [CrossRef] [PubMed]
  2. K. B. Howell, Principles of Fourier Analysis (CRC Press, 2001).
  3. J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19(90), 297–301 (1965). [CrossRef]
  4. A. E. Siegman, “Fiber Fourier optics,” Opt. Lett. 26(16), 1215–1217 (2001). [CrossRef]
  5. A. E. Siegman, “Fiber Fourier optics: previous publication,” Opt. Lett. 27(6), 381 (2002). [CrossRef]
  6. S. Kodama, T. Ito, N. Watanabe, S. Kondo, H. Takeuchi, H. Ito, and T. Ishibashi, “2.3 picoseconds optical gate monolithically integrating photodiode and electroabsorption modulator,” Electron. Lett. 37(19), 1185–1186 (2001). [CrossRef]
  7. H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz,” in Proceedings of Optical Fiber Communication Conference and Exhibit, (Optical Society of America, 2002), paper ThD1.
  8. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley-Interscience, 1999).
  9. B. H. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, and B. H. Johnson, “Integrated four-channel Mach-Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si,” J. Lightwave Technol. 6(6), 1011–1015 (1988). [CrossRef]
  10. N. Takato, K. Jinguji, M. Yasu, H. Toba, and M. Kawachi, “Silica-based single-mode waveguides on silicon and their application to guided-wave optical interferometers,” J. Lightwave Technol. 6(6), 1003–1010 (1988). [CrossRef]
  11. S. Suzuki, Y. Inoue, and T. Kominato, “High-density integrated 1×16 optical FDM multi/demultiplexer,” in Proceedings of Lasers and Electro-Optics Society Annual Meeting (IEEE, 1994), pp. 263–264.
  12. N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, and M. Kawachi, “Silica-based integrated optic Mach-Zehnder multi/demultiplexer family with channel spacing of 0.01-250 nm," IEEE J. Sel. Areas Comm. 8(6), 1120–1127 (1990). [CrossRef]
  13. K. Takiguchi, M. Oguma, T. Shibata, and H. Takahashi, “Demultiplexer for optical orthogonal frequency-division multiplexing using an optical fast-Fourier-transform circuit,” Opt. Lett. 34(12), 1828–1830 (2009). [CrossRef] [PubMed]
  14. A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightwave Technol. 25(1), 131–138 (2007). [CrossRef]
  15. A. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Opt. Express 14(6), 2079–2084 (2006). [CrossRef] [PubMed]
  16. W. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic Press, 2010).
  17. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009). [CrossRef]
  18. R. P. Giddings, X. Q. Jin, and J. M. Tang, “First experimental demonstration of 6Gb/s real-time optical OFDM transceivers incorporating channel estimation and variable power loading,” Opt. Express 17(22), 19727–19738 (2009). [CrossRef] [PubMed]
  19. Q. Yang, S. Chen, Y. Ma, and W. Shieh, “Real-time reception of multi-gigabit coherent optical OFDM signals,” Opt. Express 17(10), 7985–7992 (2009). [CrossRef] [PubMed]
  20. Y. Benlachtar, P. M. Watts, R. Bouziane, P. Milder, D. Rangaraj, A. Cartolano, R. Koutsoyannis, J. C. Hoe, M. Püschel, M. Glick, and R. I. Killey, “Generation of optical OFDM signals using 21.4 GS/s real time digital signal processing,” Opt. Express 17(20), 17658–17668 (2009). [CrossRef] [PubMed]
  21. H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010). [CrossRef] [PubMed]
  22. E. Yamada, A. Sano, H. Masuda, T. Kobayashi, E. Yoshida, Y. Miyamoto, Y. Hibino, K. Ishihara, Y. Takatori, K. Okada, K. Hagimoto, T. Yamada, and H. Yamazaki, “Novel no-guard-interval PDM CO-OFDM transmission in 4.1 Tb/s (50 × 88.8-Gb/s) DWDM link over 800 km SMF including 50-Ghz spaced ROADM nodes,” in Proceedings of Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (Optical Society of America, 2008), paper PDP8.
  23. S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” in Proceedings of European Conference on Optical Communication (IEEE, 2009), paper PD2.6.
  24. A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005). [CrossRef]
  25. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009). [CrossRef] [PubMed]
  26. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008). [CrossRef] [PubMed]
  27. T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, “Electro-optically multiplexed 110 Gbit/s optical OFDM signal transmission over 80 km SMF without dispersion compensation,” Electron. Lett. 44(3), 225–226 (2008). [CrossRef]
  28. D. Hillerkuss, A. Marculescu, J. Li, M. Teschke, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Novel optical fast Fourier transform scheme enabling real-time OFDM processing at 392 Gbit/s and beyond,” in Proceedings of Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (Optical Society of America, 2010), paper OWW3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited