OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9358–9365

Grating dynamics in a photorefractive polymer with Alq3 electron traps

C. W. Christenson, J. Thomas, P.-A. Blanche, R. Voorakaranam, R. A. Norwood, M. Yamamoto, and N. Peyghambarian  »View Author Affiliations


Optics Express, Vol. 18, Issue 9, pp. 9358-9365 (2010)
http://dx.doi.org/10.1364/OE.18.009358


View Full Text Article

Enhanced HTML    Acrobat PDF (801 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The electron transporting molecule tris(8-hydroxyquinoline) aluminum (Alq3) was added in low concentrations to a photorefractive polymer composite to provide trapping sites for electrons. This sample exhibited larger two-beam coupling gain, higher diffraction efficiency at lower voltages, and an increased dielectric breakdown strength compared to a control sample. The dynamics also revealed the presence of a competing grating, and a bipolar charge transport model is shown to fit the data. Overall, Alq3 improves the response time, efficiency, and breakdown voltage without a significant increase in absorption or loss of phase stability. This has applications for reflection displays and pulsed writing, where charge trapping and generation are major factors limiting the usefulness of photorefractive polymers.

© 2010 OSA

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(160.4890) Materials : Organic materials
(160.5320) Materials : Photorefractive materials

ToC Category:
Diffraction and Gratings

History
Original Manuscript: January 29, 2010
Revised Manuscript: April 7, 2010
Manuscript Accepted: April 12, 2010
Published: April 20, 2010

Citation
C. W. Christenson, J. Thomas, P.-A. Blanche, R. Voorakaranam, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, "Grating dynamics in a photorefractive polymer with Alq3 electron traps," Opt. Express 18, 9358-9365 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-9-9358


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66(14), 1846–1849 (1991). [CrossRef] [PubMed]
  2. J. Thomas, R. A. Norwood, and N. Peyghambarian, “Photorefractive Polymers for Dynamic Holography,” in New Directions in Holography and Speckle, H. J. Caulfield and C. S. Vikram, eds. (American Scientific, 2008).
  3. B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “Polymer optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996). [CrossRef]
  4. J. G. Winiarz, F. Ghebremichael, J. Thomas, G. Meredith, and N. Peyghambarian, “Dynamic correction of a distorted image using a photorefractive polymeric composite,” Opt. Express 12(11), 2517–2528 (2004). [CrossRef] [PubMed]
  5. S. Tay, J. Thomas, M. Eralp, G. Li, B. Kippelen, S. R. Marder, G. Meredith, A. Schülzgen, and N. Peyghambarian, “Photorefractive polymer composite operating at the optical communication wavelength of 1550nm,” Appl. Phys. Lett. 85(20), 4561–4563 (2004). [CrossRef]
  6. M. Salvador, J. Prauzner, S. Köber, K. Meerholz, J. J. Turek, K. Jeong, and D. D. Nolte, “Thee-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device,” Opt. Express 17(14), 11834–11849 (2009). [CrossRef] [PubMed]
  7. S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008). [CrossRef] [PubMed]
  8. P.-A. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008). [CrossRef]
  9. K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994). [CrossRef]
  10. M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006). [CrossRef]
  11. J. Thomas, R. A. Norwood, and N. Peyghambarian, “Non-linear optical polymers for photorefractive applications,” J. Mater. Chem. 19(40), 7476–7489 (2009). [CrossRef]
  12. G. G. Malliaras, V. V. Krasnikov, H. J. Bolink, and G. Hadziioannou, “Control of charge trapping in a photorefractive polymer,” Appl. Phys. Lett. 66(9), 1038–1040 (1995). [CrossRef]
  13. O. Ostroverkhova and K. D. Singer, “Space-charge dynamics in photorefractive polymers,” J. Appl. Phys. 92(4), 1727–1743 (2002). [CrossRef]
  14. J.-W. Oh, C. Lee, and N. Kim, “The effect of trap density on the space charge formation in polymeric photorefractive composites,” J. Chem. Phys. 130(13), 134909 (2009). [CrossRef] [PubMed]
  15. J. Zhang, J. Chen, Y. Liu, M. Huang, Q. Wei, and Q. Gong, “Improvement on the photorefractive performance of a monolithic molecular material by introducing electron traps,” Appl. Phys. Lett. 85(8), 1323–1325 (2004). [CrossRef]
  16. Q. Wei, Y. Liu, Z. Chen, M. Huang, J. Zhang, Q. Gong, X. Chen, and Q. Zhou, “Improvement in the photorefractivity of a polymeric composite doped with the electron-injecting material Alq3,” J. Opt. A, Pure Appl. Opt. 6(9), 890–893 (2004). [CrossRef]
  17. J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. A. Walker, S. Barlow, B. Kippelen, G. Meredith, S. R. Marder, and N. Peyghambarian, “Bistriarylamine polymer-based composites for photorefractive applications,” Adv. Mater. 16(22), 2032–2036 (2004). [CrossRef]
  18. A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “Amplified scattering in a high-gain photorefractive polymer,” J. Opt. Soc. Am. B 15(2), 901–904 (1998). [CrossRef]
  19. S. Zhivkova and M. Miteva, “Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers,” J. Appl. Phys. 68(7), 3099–3103 (1990). [CrossRef]
  20. S. M. Silence, C. A. Walsh, J. C. Scott, T. J. Matray, R. J. Twieg, F. Hache, G. C. Bjorklund, and W. E. Moerner, “Subsecond grating growth in a photorefractive polymer,” Opt. Lett. 17(16), 1107–1109 (1992). [CrossRef] [PubMed]
  21. L. Wang, M.-K. Ng, and L. Yu, “Photorefraction and complementary grating competition in bipolar transport molecular material,” Phys. Rev. B 62(8), 4973–4984 (2000). [CrossRef]
  22. M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Theory of complementary holograms arising from electron-hole transport in photorefractive media,” J. Opt. Soc. Am. B 7(12), 2329–2338 (1990). [CrossRef]
  23. Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, and K. Yoshino, “Fabrication and optical characteristics of an organic multi-layer structure utilizing 8-hydroxyquinoline aluminium/aromatic diamine and its application for an electroluminescent diode,” J. Phys. Condens. Matter 5(43), 7979–7986 (1993). [CrossRef]
  24. T. R. Ohno, Y. Chen, S. Harvey, G. Kroll, J. Weaver, R. Haufler, and R. Smalley, “C60 bonding and energy-level alignment on metal and seminconductor surfaces,” Phys. Rev. B 44(24), 13747–13755 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited