OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9384–9397

Modeling of the SPR resolution enhancement for conventional and nanoparticle inclusive sensors by using statistical hypothesis testing

Anne Barnett and Ewa M. Goldys  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 9384-9397 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1118 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper describes a statistical approach that improves the detection accuracy in simulated experimental surface plasmon resonance (SPR) systems operated in a conventional angular readout scheme. Two SPR system have been investigated: a conventional one and a second one, containing absorbing metallic nanoparticles within the sensing layer. The modified Maxwell-Garnett model that optimally describes the experimental literature results was applied to modeling of the nanoparticle-inclusive sensor. Statistical hypothesis testing was then used to determine the limit of detection of the analyte and nanoparticles. Analyte concentrations as low as 1 pM, corresponding to the refractive index change of 4x10−8 have been detected with optimized metal layers operated close to the nanoparticle absorption maximum. This is about one order of magnitude smaller than the values obtained in conventional SPR systems with nanoparticles and comparable to the phase-sensitive surface plasmon resonance detection.

© 2010 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(230.4170) Optical devices : Multilayers
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:

Original Manuscript: December 17, 2009
Revised Manuscript: April 5, 2010
Manuscript Accepted: April 7, 2010
Published: April 21, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Anne Barnett and Ewa M. Goldys, "Modeling of the SPR resolution enhancement for conventional and nanoparticle inclusive sensors by using statistical hypothesis testing," Opt. Express 18, 9384-9397 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Y. Wu, H. P. Ho, W. C. Law, C. L. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett. 29(20), 2378–2380 (2004). [CrossRef] [PubMed]
  2. Y. D. Su, S. J. Chen, and T. L. Yeh, “Common-path phase-shift interferometry surface plasmon resonance imaging system,” Opt. Lett. 30(12), 1488–1490 (2005). [CrossRef] [PubMed]
  3. C. Chou, H. T. Wu, Y. C. Huang, W. C. Kuo, and Y. L. Chen, “Characteristics of a paired surface plasma waves biosensor,” Opt. Express 14(10), 4307–4315 (2006). [CrossRef] [PubMed]
  4. W. C. Kuo, C. Chou, and H. T. Wu, “Optical heterodyne surface-plasmon resonance biosensor,” Opt. Lett. 28(15), 1329–1331 (2003). [CrossRef] [PubMed]
  5. M. H. Chiu, S. F. Wang, and R. S. Chang, “D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry,” Opt. Lett. 30(3), 233–235 (2005). [CrossRef] [PubMed]
  6. F. C. Chien and S. J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20(3), 633–642 (2004). [CrossRef] [PubMed]
  7. X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Monmand, and F. Zhou, “Sub-attomole oligonucleotide and p53 cDNA determinations via a high resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification,” Anal. Chem. 354, 220–228 (2006).
  8. C. E. Jordan, A. G. Frutos, A. J. Thiel, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA hybridisation adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces,” Anal. Chem. 69(24), 4939–4947 (1997). [CrossRef]
  9. N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, “One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalised surfaces applied to the detection of cystic fibrosis mutations,” Sens. Actuators B Chem. 94(3), 313–323 (2003). [CrossRef]
  10. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003). [CrossRef] [PubMed]
  11. E. F. A. de Vries, R. B. M. Schasfoort, J. Vanderplas, and J. Greve, “Nucleic-Acid Detection with Surface-Plasmon Resonance Using Cationic Latex,” Biosens. Bioelectron. 9(7), 509–514 (1994). [CrossRef]
  12. J. L. Ortega-Vinuesa, R. Hidalgo-Álvarez, C. L. Davey, D. J. Newman, C. P. Price, C. P. Price., and F. J. de las Nieves, “Characterization of immunoglobulin G bound to latex particles using surface plasmon resonance and electrophoretic mobility,” J. Colloid Interface Sci. 204(2), 300–311 (1998). [CrossRef] [PubMed]
  13. Y. Sato, Y. Sato, A. Okumura, K. Suzuki, and H. Kawaguchi, “Flow-stress-induced discrimination of a K-ras point mutation by sandwiched polymer microsphere-enhanced surface plasmon resonance,” J. Biomater. Sci. Polym. Ed. 15(3), 297–310 (2004). [CrossRef] [PubMed]
  14. Y. Sato, S. Ikegaki, K. Suzuki, and H. Kawaguchi, “Hydrogel-microsphere-enhanced surface plasmon resonance for the detection of a K-ras point mutation employing peptide nucleic acid,” J. Biomater. Sci. Polym. Ed. 14(8), 803–820 (2003). [CrossRef] [PubMed]
  15. T. Wink, S. J. van Zuilen, A. Bult, and W. P. van Bennekom, “Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry,” Anal. Chem. 70(5), 827–832 (1998). [CrossRef] [PubMed]
  16. T. Kume, N. Nakagawa, S. Hayashi, and K. Yamamoto, “Interaction between localized and propagating surface plasmons - Ag fine particles on Al surface,” Solid State Commun. 93(2), 171–175 (1995). [CrossRef]
  17. T. Kume, S. Hayashi, and K. Yamamoto, “Light emission from surface plasmon polaritons mediated by metallic particles,” Phys. Rev. B 55(7), 4774–4782 (1997). [CrossRef]
  18. L. He, E. A. Smith, M. J. Natan, and C. D. Keating, “The distance dependence of colloidal Au-amplified surface plasmon resonance,” J. Phys. Chem. B 108(30), 10973–10980 (2004). [CrossRef]
  19. E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105(1), 8–12 (2001). [CrossRef]
  20. E. Hutter, J. H. Fendler, and D. Roy, “Surface plasmon resonance studies of gold and silver nanoparticles linked to gold and silver substrates by 2-aminoethanethiol and 1,6-hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001). [CrossRef]
  21. L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70(24), 5177–5183 (1998). [CrossRef] [PubMed]
  22. L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B 103(28), 5826–5831 (1999). [CrossRef]
  23. L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuators B Chem. 54(1-2), 1–2, 118–124 (1999). [CrossRef]
  24. N. Zhang, Z. Z. Chen, and B. Tang, “Recent applications of fluorescence imaging in bioanalysis,” Chinese J. Anal. Chem. 34(7), 1030–1034 (2006).
  25. K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the sensitivity enhancement of nanoparticle-based surface plasmon resonance biosensors using rigorous coupled-wave analysis,” in Photonics West: Plasmonics in Biology and Medicine II, T. Vo-Dinh, J. R. Lakowicz, and Z. K. Gryczynski, eds., 5703, pp. 61–70, Proceedings of SPIE, (2005).
  26. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 1–2, 3–15 (1999). [CrossRef]
  27. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 1–2, 16–24 (1999). [CrossRef]
  28. J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B Chem. 41(1-3), 1–3, 207–211 (1997). [CrossRef]
  29. E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 6–7, 635–649 (1996). [CrossRef]
  30. B. Ran and S. G. Lipson, “Comparison between sensitivities of phase and intensity detection in surface plasmon resonance,” Opt. Express 14(12), 5641–5650 (2006). [CrossRef] [PubMed]
  31. A. Barnett, E. M. Goldys, and K. Dybek, “ Detection limit improvement of surface plasmon resonance based biosensors using statistical hypothesis testing”, Proceedings of SPIE-The International Society for Optical Engineering, 5703 (Plasmonics in Biology and Medicine II), 71–78. (2005)
  32. X. H. Li, K. Tamada, A. Baba, W. Knoll, and M. Hara, “Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance,” J. Phys. Chem. B 110(32), 15755–15762 (2006). [CrossRef] [PubMed]
  33. C. D. Xiao and S. F. Sui, “Characterization of surface plasmon resonance biosensor,” Sens. Actuators B Chem. 66, 1–3, 174–177 (2000).
  34. D. Roy, “Optical characterisation of multi-layer thin films using the surface plasmon resonance method: A six-phase model based on the Kretschmann formalism,” Opt. Commun. 200(1-6), 119–130 (2001). [CrossRef]
  35. X. L. Yu, D. X. Wang, and Z. B. Yan, “Simulation and analysis of surface plasmon resonance biosensor based on phase detection,” Sens. Actuators B Chem. 91, 1–3, 285–290 (2003).
  36. T. M. Inc., “Matlab . technical development software.
  37. M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315(5-6), 5–6, 313–320 (1999). [CrossRef]
  38. J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. 203(1), 385–420 (1904). [CrossRef]
  39. K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal. Chem. 74(3), 696–701 (2002). [CrossRef] [PubMed]
  40. E. Fu, S. A. Ramsey, J. Chen, T. M. Chinowsky, B. Wiley, Y. Xia, and P. Yager, “Resonance wavelength-dependent signal of absorptive particles in surface plasmon resonance-based detection,” Sens. Actuators B Chem. 123(1), 606–613 (2007). [CrossRef] [PubMed]
  41. http://www.biacore.com/catalog/ , “System specification and performance.
  42. R. Karlsson and R. Ståhlberg, “Surface plasmon resonance detection and multispot sensing for direct monitoring of interactions involving low-molecular-weight analytes and for determination of low affinities,” Anal. Biochem. 228(2), 274–280 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited