OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9398–9412

Precise optical modeling of blue light-emitting diodes by Monte Carlo ray-tracing

Zongyuan Liu, Kai Wang, Xiaobing Luo, and Sheng Liu  »View Author Affiliations


Optics Express, Vol. 18, Issue 9, pp. 9398-9412 (2010)
http://dx.doi.org/10.1364/OE.18.009398


View Full Text Article

Enhanced HTML    Acrobat PDF (2701 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Precise optical modeling of blue light-emitting diodes (LEDs) is constructed by reasonable optical parameters and Monte Carlo ray-tracing with the capability of precisely predicting light extraction and radiation pattern for both bare LED and packaged LED. Refractive indices and absorption coefficients of LED materials are determined by abundant references and comparisons between simulations and experiments. Surface roughness is considered in the optical model to improve the simulation precision. The simulation precisions are excellent for both bare blue LEDs (>96.5% for light extraction and >99% for radiation pattern) and packaged blue LEDs (>98.5% for both light extraction and radiation pattern).

© 2010 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(350.4600) Other areas of optics : Optical engineering

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: February 3, 2010
Revised Manuscript: March 29, 2010
Manuscript Accepted: April 5, 2010
Published: April 21, 2010

Citation
Zongyuan Liu, Kai Wang, Xiaobing Luo, and Sheng Liu, "Precise optical modeling of blue light-emitting diodes by Monte Carlo ray-tracing," Opt. Express 18, 9398-9412 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-9-9398


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C.-C. Sun, C.-Y. Chen, H.-Y. He, C.-C. Chen, W.-T. Chien, T.-X. Lee, and T.-H. Yang, “Precise optical modeling for silicate-based white LEDs,” Opt. Express 16(24), 20060–20066 (2008). [CrossRef] [PubMed]
  2. C.-C. Sun, W.-T. Chien, I. Moreno, C.-C. Hsieh, and Y.-C. Lo, “Analysis of the far-field region of LEDs,” Opt. Express 17(16), 13918–13927 (2009). [CrossRef] [PubMed]
  3. Z. Y. Liu, S. Liu, K. Wang, and X. B. Luo, “Optical analysis of color distribution in white LEDs with various packaging methods,” IEEE Photon. Technol. Lett. 20(24), 2027–2029 (2008). [CrossRef]
  4. Z. Y. Liu, S. Liu, K. Wang, and X. B. Luo, “Optical analysis of phosphor's location for high-power light-emitting diodes,” IEEE Trans. Device Mater. Reliab. 9(1), 65–73 (2009). [CrossRef]
  5. Z. Y. Liu, S. Liu, K. Wang, and X. B. Luo, “Studies on optical consistency of white LEDs affected by phosphor thickness and concentration using optical simulation,” IEEE Trans. Compon. Packag. Tech. (Accepted).
  6. J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Strongly enhanced phosphor efficiency in GaInN white light-emitting diodes using remote phosphor configuration and diffuse reflector cup,” Jpn. J. Appl. Phys. 44(21), L649–L651 (2005). [CrossRef]
  7. H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes,” Appl. Phys. Lett. 86(24), 243505 (2005). [CrossRef]
  8. N. T. Tran and F. G. Shi, “Studies of phosphor concentration and thickness for phosphor-based white light-emitting-diodes,” J. Lightwave Technol. 26(21), 3556–3559 (2008). [CrossRef]
  9. C.-C. Sun, T.-X. Lee, S.-H. Ma, Y.-L. Lee, and S.-M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31(14), 2193–2195 (2006). [CrossRef] [PubMed]
  10. S. J. Lee, “Analysis of light-emitting diodes by Monte Carlo photon simulation,” Appl. Opt. 40(9), 1427–1437 (2001). [CrossRef]
  11. T.-X. Lee, C.-Y. Lin, S.-H. Ma, and C.-C. Sun, “Analysis of position-dependent light extraction of GaN-based LEDs,” Opt. Express 13(11), 4175–4179 (2005). [CrossRef] [PubMed]
  12. T.-X. Lee, K.-F. Gao, W.-T. Chien, and C.-C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt. Express 15(11), 6670–6676 (2007). [CrossRef] [PubMed]
  13. H. Wang, J. H. Ryu, K. S. Lee, C. H. Tan, L. H. Jin, S. M. Li, C. H. Hong, Y. H. Cho, and S. H. Liu, “Active packing method for blue light-emitting diodes with photosensitive polymerization: formation of self-focusing encapsulates,” Opt. Express 16(6), 3680–3685 (2008). [CrossRef] [PubMed]
  14. A. Borbely, and S. G. Johnson, “Performance of phosphor-coated LED optics in ray trace simulations,” in Fourth International Conference on Solid State Lighting, (SPIE, 2004), 266–273.
  15. T. Peng and J. Piprek, “Refractive index of AlGaInN alloys,” Electron. Lett. 32(24), 2285–2286 (1996). [CrossRef]
  16. G. M. Laws, E. C. Larkins, I. Harrison, C. Molloy, and D. Somerford, “Improved refractive index formulas for the AlxGa1 -xN and InyGa1 -yN alloys,” J. Appl. Phys. 89(2), 1108–1115 (2001). [CrossRef]
  17. F. Yun, M. A. Reshchikov, L. He, T. King, H. Morkoc, S. W. Novak, and L. Wei, “Energy band bowing parameter in Al[sub x]Ga[sub 1 - x]N alloys,” J. Appl. Phys. 92(8), 4837–4839 (2002). [CrossRef]
  18. W. Walukiewicz, S. X. Li, J. Wu, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Optical properties and electronic structure of InN and In-rich group III-nitride alloys,” J. Cryst. Growth 269(1), 119–127 (2004). [CrossRef]
  19. M. Anani, H. Abid, Z. Chama, C. Mathieu, A. Sayede, and B. Khelifa, “InxGa1-xN refractive index calculations,” Microelectron. J. 38(2), 262–266 (2007). [CrossRef]
  20. A. B. Djurišić and E. H. Li, “Modeling the optical constants of hexagonal GaN, InN, and AlN,” J. Appl. Phys. 85(5), 2848–2853 (1999). [CrossRef]
  21. L. F. Jiang, W. Z. Shen, H. F. Yang, H. Ogawa, and Q. X. Guo, “Temperature effects on optical properties of InN thin films,” Appl. Phys. A: Mater. Sci. Process 78(1), 89–93 (2004). [CrossRef]
  22. H. Ahn, C. H. Shen, C. L. Wu, and S. Gwo, “Spectroscopic ellipsometry study of wurtzite InN epitaxial films on Si(111) with varied carrier concentrations,” Appl. Phys. Lett. 86(20), 201905 (2005). [CrossRef]
  23. R. R. Lieten, S. Degroote, M. Leys, J. Derluyn, M. Kuijk, and G. Borghs, “Growth of InN on Ge(1 1 1) by molecular beam epitaxy using a GaN buffer,” J. Cryst. Growth 310(6), 1132–1136 (2008). [CrossRef]
  24. M. J. Bergmann and J. H. C. Casey, “Optical-field calculations for lossy multiple-layer AlxGa1-xN/InxGa1-xN laser diodes,” J. Appl. Phys. 84(3), 1196–1203 (1998). [CrossRef]
  25. I. H. Malitson, and M. J. Dodge, “Refractive index and birefringence of synthetic sapphire,” in 1972 Annual Meeting of the Optical Society of America, (Optical Soc. America, 1972), 78.
  26. H. El Rhaleb, E. Benamar, M. Rami, J. P. Roger, A. Hakam, and A. Ennaoui, “Spectroscopic ellipsometry studies of index profile of indium tin oxide films prepared by spray pyrolysis,” Appl. Surf. Sci. 201(1-4), 138–145 (2002). [CrossRef]
  27. Y. S. Jung, “Spectroscopic ellipsometry studies on the optical constants of indium tin oxide films deposited under various sputtering conditions,” Thin Solid Films 467(1-2), 36–42 (2004). [CrossRef]
  28. J. Zhou, “Indium tin oxide (ITO) deposition, patterning, and Schottky contact fabrication,” (Rochester Insititute of Technology, 2005).
  29. H. N. Cui, V. Teixeira, L. J. Meng, R. Martins, and E. Fortunato, “Influence of oxygen/argon pressure ratio on the morphology, optical and electrical properties of ITO thin films deposited at room temperature,” Vacuum 82(12), 1507–1511 (2008). [CrossRef]
  30. O. Ambacher, W. Rieger, P. Ansmann, H. Angerer, T. D. Moustakas, and M. Stutzmann, “Sub-bandgap absorption of gallium nitride determined by photothermal deflection spectroscopy,” Solid State Commun. 97(5), 365–370 (1996). [CrossRef]
  31. G. Bentoumi, A. Deneuville, B. Beaumont, and P. Gibart, “Influence of Si doping level on the Raman and IR reflectivity spectra and optical absorption spectrum of GaN,” Mater. Sci. Eng. B 50(1-3), 142–147 (1997). [CrossRef]
  32. D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82(10), 5090–5096 (1997). [CrossRef]
  33. G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997). [CrossRef]
  34. H. Ye, G. W. Wicks, and P. M. Fauchet, “Hot electron relaxation time in GaN,” Appl. Phys. Lett. 74(5), 711–713 (1999). [CrossRef]
  35. H. Ye, G. W. Wicks, and P. M. Fauchet, “Hot hole relaxation dynamics in p-GaN,” Appl. Phys. Lett. 77(8), 1185–1187 (2000). [CrossRef]
  36. S.-S. Schad, B. Neubert, C. Eichler, M. Scherer, F. Habel, M. Seyboth, F. Scholz, D. Hofstetter, P. Unger, W. Schmid, C. Karnutsch, and K. Streubel, “Absorption and Light Scattering in InGaN-on-Sapphire- and AlGaInP-Based Light-Emitting Diodes,” J. Lightwave Technol. 22(10), 2323–2332 (2004). [CrossRef]
  37. H. Hasegawa, Y. Kamimura, K. Edagawa, and I. Yonenaga, “Dislocation-related optical absorption in plastically deformed GaN,” J. Appl. Phys. 102, 026103 (2007). [CrossRef]
  38. Y. Lelikov, N. Bochkareva, R. Gorbunov, I. Martynov, Y. Rebane, D. Tarkin, and Y. Shreter, “Measurement of the absorption coefficient for light laterally propagating in light-emitting diode structures with In0.2Ga0.8N/GaN quantum wells,” Semiconductors 42(11), 1342–1345 (2008). [CrossRef]
  39. Y. Oshima, T. Suzuki, T. Eri, Y. Kawaguchi, K. Watanabe, M. Shibata, and T. Mishima, “Thermal and optical properties of bulk GaN crystals fabricated through hydride vapor phase epitaxy with void-assisted separation,” J. Appl. Phys. 98(10), 103509 (2005). [CrossRef]
  40. F. Omnes, N. Marenco, S. Haffouz, H. Lahreche, P. de Mierry, B. Beaumont, P. Hageman, E. Monroy, F. Calle, and E. Munoz, “Low pressure MOVPE grown AlGaN for UV photodetector applications,” Mater. Sci. Eng. B 59(1-3), 401–406 (1999). [CrossRef]
  41. R. W. Martin, P. G. Middleton, K. P. O'Donnell, and W. Van der Stricht, “Exciton localization and the Stokes' shift in InGaN epilayers,” Appl. Phys. Lett. 74(2), 263–265 (1999). [CrossRef]
  42. K. P. O'Donnell, R. W. Martin, and P. G. Middleton, “Origin of Luminescence from InGaN Diodes,” Phys. Rev. Lett. 82(1), 237–240 (1999). [CrossRef]
  43. K. P. O'Donnell, R. W. Martin, P. G. Middleton, S. C. Bayliss, I. Fletcher, W. Van der Stricht, P. Demeester, and I. Moerman, “Spectroscopy and microscopy of localised and delocalised excitons in InGaN-based light emitting diodes and epilayers,” Mater. Sci. Eng. B 59(1-3), 288–291 (1999). [CrossRef]
  44. H. C. Yang, P. F. Kuo, T. Y. Lin, Y. F. Chen, K. H. Chen, L. C. Chen, and J.-I. Chyi, “Mechanism of luminescence in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 76(25), 3712–3714 (2000). [CrossRef]
  45. J. A. Davidson, P. Dawson, T. Wang, T. Sugahara, J. W. Orton, and S. Sakai, “Photoluminescence studies of InGaN/GaN multi-quantum wells,” Semicond. Sci. Technol. 15(6), 497–505 (2000). [CrossRef]
  46. J. Kvietkova, L. Siozade, P. Disseix, A. Vasson, J. Leymarie, B. Damilano, N. Grandjean, and J. Massies, “Optical Investigations and Absorption Coefficient Determination of InGaN/GaN Quantum Wells,” Phys. Status Solidi 190(1), 135–140 (2002). [CrossRef]
  47. Z. C. Feng, J. Chen, H. Tsai, J. Yang, P. Li, C. Wetzel, T. Detchprohm, J. Nelson, and I. T. Ferguson, “Optical and structural investigation on InGaN/GaN multiple quantum well light-emitting diodes grown on sapphire by metalorganic chemical vapor deposition,” in Sixth International Conference on Solid State Lighting, (SPIE, 2006), 63370D.
  48. Y. Takeda, D. Takagi, T. Sano, S. Tabata, N. Kobayashi, Q. Shen, T. Toyoda, J. Yamamoto, Y. Ban, and K. Matsumoto, “Room-temperature absorption edge of InGaN/GaN quantum wells characterized by photoacoustic measurement,” Jpn. J. Appl. Phys. 47(12), 8805–8807 (2008). [CrossRef]
  49. H. E. Bennett and J. O. Porteus, “Relation Between Surface Roughness and Specular Reflectance at Normal Incidence,” J. Opt. Soc. Am. 51(2), 123–129 (1961). [CrossRef]
  50. K. H. Guenther, P. G. Wierer, and J. M. Bennett, “Surface roughness measurements of low-scatter mirrors and roughness standards,” Appl. Opt. 23(21), 3820–3836 (1984). [CrossRef] [PubMed]
  51. X. A. Cao, J. A. Teetsov, F. Shahedipour-Sandvik, and S. D. Arthur, “Microstructural origin of leakage current in GaN/InGaN light-emitting diodes,” J. Cryst. Growth 264(1-3), 172–177 (2004). [CrossRef]
  52. D. Lu, D. I. Florescu, D. S. Lee, V. Merai, J. C. Ramer, A. Parekh, and E. A. Armour, “Sapphire substrate misorientation effects on GaN nucleation layer properties,” J. Cryst. Growth 272(1-4), 353–359 (2004). [CrossRef]
  53. Y. Xing, J. Han, J. Deng, J. Li, C. Xu, and G. Shen, “Investigation of GaN layer grown on different low misoriented sapphire by MOCVD,” Appl. Surf. Sci. 255(12), 6121–6124 (2009). [CrossRef]
  54. H. S. Kim and D. D. Martin, “Surface properties of GaN fabricated by laser lift-off and ICP etching,” J. Korean Phys. Soc. 40, 567–571 (2002).
  55. C.-F. Chu, F.-I. Lai, J.-T. Chu, C.-C. Yu, C.-F. Lin, H.-C. Kuo, and S. C. Wang, “Study of GaN light-emitting diodes fabricated by laser lift-off technique,” J. Appl. Phys. 95(8), 3916–3922 (2004). [CrossRef]
  56. H. K. Cho, S.-K. Kim, and J. S. Lee, “An improved non-alloyed ohmic contact Cr/Ni/Au to n-type GaN with surface treatment,” J. Phys. D Appl. Phys. 41(17), 175107 (2008). [CrossRef]
  57. P. Koteswara Rao and V. Rajagopal Reddy, “Effect of annealing temperature on electrical and structural properties of transparent indium tin oxide electrode to n-type GaN,” Mater. Chem. Phys. 114(2-3), 821–826 (2009). [CrossRef]
  58. D. Raoufi, “Morphological characterization of ITO thin films surfaces,” Appl. Surf. Sci. 255(6), 3682–3686 (2009). [CrossRef]
  59. H. Zhu, L. A. Tessaroto, R. Sabia, V. A. Greenhut, M. Smith, and D. E. Niesz, “Chemical mechanical polishing (CMP) anisotropy in sapphire,” Appl. Surf. Sci. 236(1-4), 120–130 (2004). [CrossRef]
  60. S. Zhou and S. Liu, “Study on sapphire removal for thin-film LEDs fabrication using CMP and dry etching,” Appl. Surf. Sci. 255(23), 9469–9473 (2009). [CrossRef]
  61. V. E. Asadchikov, A. Duparré, S. Jakobs, A. Y. Karabekov, I. V. Kozhevnikov, and Y. S. Krivonosov, “Comparative Study of the Roughness of Optical Surfaces and Thin Films by use of X-Ray Scattering and Atomic Force Microscopy,” Appl. Opt. 38(4), 684–691 (1999). [CrossRef]
  62. S. Jakobs, A. Duparré, and H. Truckenbrodt, “Interfacial roughness and related scatter in ultraviolet optical coatings: a systematic experimental approach,” Appl. Opt. 37(7), 1180–1193 (1998). [CrossRef]
  63. J. C. Stover, Optical scattering: measurement and analysis (SPIE, Bellingham, USA, 1995).
  64. A. A. Maradudin, Light scattering and nanoscale surface roughness (Springer, Irvine, USA, 2007).
  65. J. Ferré-Borrull, A. Duparre, and E. Quesnel, “Procedure to characterize microroughness of optical thin films: application to ion-beam-sputtered vacuum-ultraviolet coatings,” Appl. Opt. 40(13), 2190–2199 (2001). [CrossRef]
  66. M. Senthilkumar, N. K. Sahoo, S. Thakur, and R. B. Tokas, “Characterization of microroughness parameters in gadolinium oxide thin films: A study based on extended power spectral density analyses,” Appl. Surf. Sci. 252(5), 1608–1619 (2005). [CrossRef]
  67. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  68. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004). [CrossRef]
  69. I. Moreno, D. Bermúdez, and M. Avendaño-Alejo, “Light-emitting diode spherical packages: an equation for the light transmission efficiency,” Appl. Opt. 49(1), 12–20 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited