OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9474–9485

Fluorescence-based sensing with optical nanowires: a generalized model and experimental validation

Stephen C. Warren-Smith, Shahraam Afshar, V., and Tanya M. Monro  »View Author Affiliations


Optics Express, Vol. 18, Issue 9, pp. 9474-9485 (2010)
http://dx.doi.org/10.1364/OE.18.009474


View Full Text Article

Enhanced HTML    Acrobat PDF (1065 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A model for the fluorescence sensing properties of small-core high-refractive-index fibers (optical nanowires) is developed and compared quantitatively with experiment. For the first time, higher-order modes and loss factors relevant to optical nanowires are included, which allows the model to be compared effectively with experiment via the use of fluorophore filled suspended optical nanowires. Numerical results show that high-index materials are beneficial for fluorescence-based sensing. However, both numerical and experimental results show that the fluorescence signal is relatively insensitive to core size, except for low concentration sensing where nanoscale fiber cores are advantageous due to the increased evanescent field power.

© 2010 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(300.2530) Spectroscopy : Fluorescence, laser-induced
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Sensors

History
Original Manuscript: February 19, 2010
Revised Manuscript: April 11, 2010
Manuscript Accepted: April 13, 2010
Published: April 21, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Stephen C. Warren-Smith, Shahraam Afshar, and Tanya M. Monro, "Fluorescence-based sensing with optical nanowires: a generalized model and experimental validation," Opt. Express 18, 9474-9485 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-9-9474


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005). [CrossRef] [PubMed]
  2. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004). [CrossRef] [PubMed]
  3. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006). [CrossRef] [PubMed]
  4. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004). [CrossRef]
  5. S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Opt. Express 15(20), 12783–12791 (2007). [CrossRef] [PubMed]
  6. Y. Ruan, T. C. Foo, S. C. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008). [CrossRef] [PubMed]
  7. S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007). [CrossRef] [PubMed]
  8. S. Afshar, Y. Ruan, S. C. Warren-Smith, and T. M. Monro, “Enhanced fluorescence sensing using microstructured optical fibers: a comparison of forward and backward collection modes,” Opt. Lett. 33(13), 1473–1475 (2008). [CrossRef]
  9. S. C. Warren-Smith, S. Afshar, and T. M. Monro, “Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing,” Opt. Express 16(12), 9034–9045 (2008). [CrossRef] [PubMed]
  10. Y. Zhu, H. Du, and R. Bise, “Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing,” Opt. Express 14(8), 3541–3546 (2006). [CrossRef] [PubMed]
  11. Y. N. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008). [CrossRef]
  12. J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13(6), 2135–2140 (2005). [CrossRef] [PubMed]
  13. Y. L. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express 15(26), 17819–17826 (2007). [CrossRef] [PubMed]
  14. T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008). [CrossRef]
  15. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 10501–10503 (2007). [CrossRef]
  16. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef] [PubMed]
  17. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009). [CrossRef] [PubMed]
  18. T. R. Glass, S. Lackie, and T. Hirschfeld, “Effect of numerical aperture on signal level in cylindrical wave-guide evanescent fluorosensors,” Appl. Opt. 26(11), 2181–2187 (1987). [CrossRef] [PubMed]
  19. H. P. Kao, N. Yang, and J. S. Schoeniger, “Enhancement of evanescent fluorescence from fiber-optic sensors by thin-film sol-gel coatings,” J. Opt. Soc. Am. A 15(8), 2163–2171 (1998). [CrossRef]
  20. D. Marcuse, “Launching light into fiber cores from sources located in the cladding,” J. Lightwave Technol. 6(8), 1273–1279 (1988). [CrossRef]
  21. D. Marcuse, “Excitation of parabolic-index fibers with incoherent sources,” Bell Syst. Tech. J. 54, 1507–1530 (1975).
  22. C. O. Egalon, R. S. Rogowski, and A. C. Tai, “Excitation efficiency of an optical fiber core source,” Opt. Eng. 31(6), 1328–1331 (1992). [CrossRef]
  23. C. O. Egalon and R. S. Rogowski, “Efficiency of core light injection from sources in the cladding - bulk distribution,” Opt. Eng. 31(4), 846–851 (1992). [CrossRef]
  24. C. O. Egalon and R. S. Rogowski, “Theoretical-model for a thin cylindrical film optical fiber fluorosensor,” Opt. Eng. 31(2), 237–244 (1992). [CrossRef]
  25. A. W. Snyder, and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  26. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2000).
  27. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. S. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13(20), 7779–7793 (2005). [CrossRef] [PubMed]
  28. G. Y. Zhai and L. M. Tong, “Roughness-induced radiation losses in optical micro or nanofibers,” Opt. Express 15(21), 13805–13816 (2007). [CrossRef] [PubMed]
  29. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006). [CrossRef] [PubMed]
  30. A. Bryant, S. Albin, C. O. Egalon, and R. S. Rogowski, “Changes in the amount of core light injection for fluorescent-clad optical-fiber due to variations in the fiber refractive-index and core radius - experimental results,” J. Opt. Soc. Am. B 12(5), 904–906 (1995). [CrossRef]
  31. S. Albin, A. L. Bryant, C. O. Egalon, and R. S. Rogowski, “Injection efficiency from a side-excited thin-film fluorescent cladding of a circular wave-guide,” Opt. Eng. 33(4), 1172–1175 (1994). [CrossRef]
  32. F. W. D. Rost, Fluorescence Microscopy (Cambridge University Press, 1992)
  33. E. P. Schartner, R. T. White, S. C. Warren-Smith, and T. M. Monro, “Practical sensitive fluorescence sensing with microstructured fibres,” Proc. SPIE 7503, 75035X (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited