OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9496–9503

Photoerasable and photorewritable spatially-tunable laser based on a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant

Shih-Hung Lin, Cang-Yi Shyu, Jui-Hsiang Liu, Po-Chih Yang, Ting-Shan Mo, Shuan-Yu Huang, and Chia-Rong Lee  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 9496-9503 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1072 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This study investigates, for the first time, a photoerasable and photorewritable spatially-tunable laser using a dye-doped cholesteric liquid crystal (DDCLC) with a photoisomerizable chiral dopant (AzoM). UV illumination via a photomask with a transmittance-gradient can create a pitch gradient in the cell such that the lasing wavelength can be spatially tuned over a wide band of 134nm. The pitch gradient is generated by the UV-irradiation-induced gradient of the cis-AzoM concentration and therefore the induced gradient of the cell HTP value, resulting in the spatial tunability of the laser. Furthermore, the laser has advantages of photoerasability and photorewritability. The spatial tunability of the laser can undergo more than 100 cycles of photoerasing and photorewriting processes without decay or damage.

© 2010 OSA

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.3600) Lasers and laser optics : Lasers, tunable
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Devices

Original Manuscript: March 3, 2010
Revised Manuscript: April 16, 2010
Manuscript Accepted: April 20, 2010
Published: April 21, 2010

Shih-Hung Lin, Cang-Yi Shyu, Jui-Hsiang Liu, Po-Chih Yang, Ting-Shan Mo, Shuan-Yu Huang, and Chia-Rong Lee, "Photoerasable and photorewritable spatially-tunable laser based on a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant," Opt. Express 18, 9496-9503 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  3. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal Fibers: A New Class of Optical Waveguides,” Opt. Fiber Technol. 5(3), 305–330 (1999). [CrossRef]
  4. J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppilhalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198(4-6), 265–272 (2001). [CrossRef]
  5. P. Tran, “Optical switching with a nonlinear photonic crystal: a numerical study,” Opt. Lett. 21(15), 1138–1140 (1996). [CrossRef] [PubMed]
  6. R. W. Ziolkowski and T. Liang, “Design and characterization of a grating-assisted coupler enhanced by a photonic-band-gap structure for effective wavelength-division demultiplexing,” Opt. Lett. 22(13), 1033–1035 (1997). [CrossRef] [PubMed]
  7. T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, “Nano-Structuredd Surfaces For Tuned Infrared Emission For Spectroscopic Applications,” Proc. SPIE Opt. 2000. Photonics West, San Jose, CA, 22–28. January (2000).
  8. B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003). [CrossRef] [PubMed]
  9. P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003). [CrossRef] [PubMed]
  10. M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002). [CrossRef]
  11. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994). [CrossRef]
  12. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998). [CrossRef]
  13. V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quantum Electron. 27(6), 369–416 (2003). [CrossRef]
  14. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86(5), 051107 (2005). [CrossRef]
  15. Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006). [CrossRef]
  16. K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46(36), L874–L876 (2007). [CrossRef]
  17. M.-Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 051108 (2008). [CrossRef]
  18. G. Petriashvili, M. A. Matranga, M. P. De Santo, G. Chilaya, and R. Barberi, “Wide band gap materials as a new tuning strategy for dye doped cholesteric liquid crystals laser,” Opt. Express 17(6), 4553–4558 (2009). [CrossRef] [PubMed]
  19. J.-H. Liu, P.-C. Yang, Y.-K. Wang, and C.-C. Wang, “Optical behaviour of cholesteric liquid crystal cells with novel photoisomerizable chiral dopants,” Liq. Cryst. 33(3), 237–248 (2006). [CrossRef]
  20. J.-H. Liu and P.-C. Yang, “Synthesis and characterization of novel monomers and polymers containing chiral (−)-menthyl groups,” Polymer (Guildf.) 47(14), 4925–4935 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited