OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9561–9569

A multi-functional plasmonic biosensor

Yun-Tzu Chang, Yueh-Chun Lai, Chung-Tien Li, Cheng-Kuang Chen, and Ta-Jen Yen  »View Author Affiliations


Optics Express, Vol. 18, Issue 9, pp. 9561-9569 (2010)
http://dx.doi.org/10.1364/OE.18.009561


View Full Text Article

Enhanced HTML    Acrobat PDF (1103 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a coupler-free, multi-mode refractive index sensor based on nanostructured split ring resonators (SRRs). The fabricated SRR structures exhibit multiple reflectance peaks, whose spectral positions are sensitive to local dielectric environment and can be quantitatively described by our standing-wave plasmonic resonance model, providing a design rule for this multi-mode refractive-index (MMRI) sensor. We further manifest that the lower-order modes possess greater sensitivity associated with stronger localized electromagnetic field leading to shorter detection lengths within five hundreds nanometers, while the higher-order modes present mediate sensitivity with micron-scale detection lengths to allow intracellular bio-events detection. These unique merits enable the SRR-based sensor a multi-functional biosensor and a potential label-free imaging device.

© 2010 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:
Sensors

History
Original Manuscript: March 19, 2010
Revised Manuscript: April 14, 2010
Manuscript Accepted: April 14, 2010
Published: April 22, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Yun-Tzu Chang, Yueh-Chun Lai, Chung-Tien Li, Cheng-Kuang Chen, and Ta-Jen Yen, "A multi-functional plasmonic biosensor," Opt. Express 18, 9561-9569 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-9-9561


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Homola, S. S. Yee, and G. T. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B 54(1-2), 3–15 (1999). [CrossRef]
  2. H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” Springer (1988).
  3. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968). [CrossRef]
  4. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs , “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996). [CrossRef] [PubMed]
  5. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]
  6. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  7. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  8. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008). [CrossRef] [PubMed]
  9. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  10. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  11. M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008). [CrossRef]
  12. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  13. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004). [CrossRef] [PubMed]
  14. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943 (2004). [CrossRef]
  15. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006). [CrossRef] [PubMed]
  16. J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic and electric excitations in split ring resonators,” Opt. Express 15(26), 17881–17890 (2007). [CrossRef] [PubMed]
  17. A. W. Clark, A. K. Sheridan, A. Glidle, D. R. S. Cumming, and J. M. Cooper, “Tunable visible resonances in crescent shaped nano-split-ring resonators,” Appl. Phys. Lett. 91(9), 093109 (2007). [CrossRef]
  18. C. Y. Chen, S. C. Wu, and T. J. Yen, “Experimental verification of standing-wave plasmonic resonances in split-ring resonators,” Appl. Phys. Lett. 93(3), 034110 (2008). [CrossRef]
  19. C. Y. Chen and T. J. Yen, “Electric and magnetic responses in the multiple-split ring resonators by electric excitation,” J. Appl. Phys. 105(12), 124913 (2009). [CrossRef]
  20. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007). [CrossRef]
  21. Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92(22), 221101 (2008). [CrossRef]
  22. S. Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009). [CrossRef]
  23. H. J. Lee and J. G. Yook, “Biosensing using split-ring resonators at microwave regime,” Appl. Phys. Lett. 92(25), 254103 (2008). [CrossRef]
  24. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007). [CrossRef]
  25. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008). [CrossRef] [PubMed]
  26. A. Cunningham, “Introduction to Bioanalytical Sensors (techniques In Analytical Chemistry),” John Wiley & Sons (1998).
  27. J. J. Mock, D. R. Smith, and S. Schultz, “Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles,” Nano Lett. 3(4), 485–491 (2003). [CrossRef]
  28. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A, Pure Appl. Opt. 8(4), 239 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited