OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9600–9612

Quantum key distribution on a 10Gb/s WDM-PON

Iris Choi, Robert J. Young, and Paul D. Townsend  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 9600-9612 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1171 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the first demonstration of quantum key distribution (QKD) on a multi-user wavelength division multiplexed passive optical network (WDM-PON) with simultaneous, bidirectional 10Gb/s classical channel transmission. The C-Band QKD system operates at a clock rate of 10GHz and employs differential phase shift keying (DPSK). A dual feeder fiber and band filtering scheme is used to suppress classical to quantum channel cross-talk generated by spontaneous Raman scattering, which would otherwise prevent secure key distribution. Quantum keys were distributed to 4 users with negligible Raman cross-talk penalties. The mean QBER value for 4 users was 3.5% with a mean raw key distribution rate of 1.3Mb/s, which decreased to 696kb/s after temporal windowing to reduce inter-symbol interference due to single photon detector timing jitter.

© 2010 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

Original Manuscript: January 15, 2010
Revised Manuscript: March 12, 2010
Manuscript Accepted: March 29, 2010
Published: April 23, 2010

Iris Choi, Robert J. Young, and Paul D. Townsend, "Quantum key distribution on a 10Gb/s WDM-PON," Opt. Express 18, 9600-9612 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett, and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, (IEEE New York), pp. 175–179 (1984)
  2. C. Marand and P. D. Townsend, “Quantum key distribution over distances as long as 30km,” Opt. Lett. 20(16), 1695–1697 (1995). [CrossRef] [PubMed]
  3. P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33(3), 188–190 (1997). [CrossRef]
  4. C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84(19), 3762–3764 (2004). [CrossRef]
  5. R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” N. J. Phys. 4(43), 1–14 (2002). [CrossRef]
  6. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” N. J. Phys. 4(41), 1–8 (2002). [CrossRef]
  7. T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km,” Phys. Rev. Lett. 98(1), 010504 (2007). [CrossRef] [PubMed]
  8. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007). [CrossRef]
  9. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007). [CrossRef]
  10. M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” N. J. Phys. 11(7), 075001 (2009). [CrossRef]
  11. P. D. Townsend, S. J. D. Phoenix, K. J. Blow, and S. M. Barnett, “Design of quantum cryptography systems for passive optical networks,” Electron. Lett. 30(22), 1875–1876 (1994). [CrossRef]
  12. P. D. Townsend, “Quantum cryptography on multi-user optical fibre networks,” Nature 385(6611), 47–49 (1997). [CrossRef]
  13. V. Fernandez, R. J. Collins, K. J. Gordon, P. D. Townsend, and G. S. Buller, “Passive Optical Network Approach to Gigahertz-Clocked Multiuser Quantum Key Distribution,” IEEE J. Quantum Electron. 43(2), 130–138 (2007). [CrossRef]
  14. P. D. Kumavor, A. C. Beal, S. Yelin, E. Donkor, and B. C. Wang, “Comparison of Four Multi-User Quantum Key Distribution Schemes Over Passive Optical Networks,” J. Lightwave Technol. 23(1), 268–276 (2005). [CrossRef]
  15. D. Subacius, A. Zavriyev, and A. Trifonov, “Backscattering limitation for fiber-optic quantum key distribution systems,” Appl. Phys. Lett. 86(1), 011103 (2005). [CrossRef]
  16. P. Toliver, R. J. Runser, T. E. Chapuran, S. McNown, M. S. Goodman, J. Jackel, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallman, “Impact of Spontaneous Anti-Stokes Raman Scattering on QKD+DWDM Networking,”, in Proceedings of Lasers and Electro-Optics Society (LEOS), vol. 2, pp. 491–492 (2004)
  17. N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental Characterisation of Wavelength Separation for ‘QKD+WDM’ Co-existence,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO), vol 2, pp.1503–1505 (2005), paper CW06.
  18. T. J. Xia, D. Z. Chen, G. Wellbrock, and A. Zavriyev, A. Beal and K. M. Lee, “In-Band Quantum Key Distribution (QKD) on Fiber Populated by High-Speed Classical Data Channels,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (Optical Society of America, 2006), paper OTuJ7.
  19. N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense Wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” N. J. Phys. 11(4), 045012 (2009). [CrossRef]
  20. ITU Standard G.694.1 (06/02), “Spectral grids for WDM applications: DWDM frequency grid,” International Telecommunication Union (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited