OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9613–9621

Study of cross-phase modulation and free-carrier dispersion in silicon photonic wires for Mamyshev signal regenerators

Hong-Sheng Hsieh, Kai-Ming Feng, and Ming-Chang M. Lee  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 9613-9621 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (3417 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A numerical study on Mamyshev signal regeneration realized on silicon photonic wires is reported. Unlike fiber-optics Mamyshev regenerators employing cross-phase modulation, silicon photonic wires have to include two-photon absorption and the two-photon-absorption-induced free-carrier effect. By well adjusting time delay between the co-propagating signal and clock pulses, both cross-phase modulation and free-carrier dispersion could induce nonlinear wavelength shift, which is essential for signal recovery in the Mamyshev regeneration scheme. A simulation result shows the quality factor of signal eye diagram improved by more than 4 dB for Return-to-Zero signals with pulse width 10 ps, peak power 6.5 W, and operation speed 10 Gbit/s through a 1-cm silicon photonic wire.

© 2010 OSA

OCIS Codes
(000.0000) General : General
(000.2700) General : General science

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 15, 2010
Revised Manuscript: March 3, 2010
Manuscript Accepted: March 9, 2010
Published: April 23, 2010

Hong-Sheng Hsieh, Kai-Ming Feng, and Ming-Chang M. Lee, "Study of cross-phase modulation and free-carrier dispersion in silicon photonic wires for Mamyshev signal regenerators," Opt. Express 18, 9613-9621 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J. Lightwave Technol. 21(11), 2779–2790 (2003). [CrossRef]
  2. O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “All-optical signal regeneration: from first principles to a 40 Gbit/s system demonstration,” C. R. Phys. 4(1), 163–173 (2003). [CrossRef]
  3. T. Miyazaki, T. Otani, N. Edagawa, M. Suzuki, and S. Yamamoto, ““Novel optical-regenerator using electroabsorption modulators,” IEICE Transactions on Electronics,” E 82C(8), 1414–1419 (1999).
  4. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” presented at the The 24th European Conference on Optical Communication, Madrid, Spain, 1998.
  5. J. Suzuki, T. Tanemura, K. Taira, Y. Ozeki, and K. Kikuchi, “All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 17(2), 423–425 (2005). [CrossRef]
  6. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood., “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14(12), 5524–5534 (2006). [CrossRef] [PubMed]
  7. S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber,” IEEE Photon. Technol. Lett. 15(7), 957–959 (2003). [CrossRef]
  8. E. Ciaramella, F. Curti, and S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 13(2), 142–144 (2001). [CrossRef]
  9. V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Yinlan Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006). [CrossRef]
  10. R. Salem and T. E. Murphy, “Polarization-insensitive cross correlation using two-photon absorption in a silicon photodiode,” Opt. Lett. 29(13), 1524–1526 (2004). [CrossRef] [PubMed]
  11. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “All-optical regeneration on a silicon chip,” Opt. Express 15(12), 7802–7809 (2007). [CrossRef] [PubMed]
  12. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007). [CrossRef] [PubMed]
  13. J. R. M. Osgood, N. C. Panoiu, and J. I. Dadap, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon. 1(1), 162–235 (2009). [CrossRef]
  14. I. W. Hsieh, X. G. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt. Express 15(3), 1135–1146 (2007). [CrossRef] [PubMed]
  15. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2006).
  16. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  17. L. H. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32(14), 2031–2033 (2007). [CrossRef] [PubMed]
  18. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited