OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9643–9650

Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides

Hui Zhan, Rajind Mendis, and Daniel M. Mittleman  »View Author Affiliations


Optics Express, Vol. 18, Issue 9, pp. 9643-9650 (2010)
http://dx.doi.org/10.1364/OE.18.009643


View Full Text Article

Enhanced HTML    Acrobat PDF (1248 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate complete two-dimensional (2-D) confinement of terahertz (THz) energy in finite-width parallel-plate waveguides, defying conventional wisdom in the century-old field of microwave waveguide technology. We find that the degree of energy confinement increases exponentially with decreasing plate separation. We propose that this 2-D confinement is mediated by the mutual coupling of plasmonic edge modes, analogous to that observed in slot waveguides at optical wavelengths. By adiabatically tapering the width and the separation, we focus THz waves down to a size of 10 μm (≈λ/260) by 18 μm (≈λ/145), which corresponds to a mode area of only 2.6 × 10−5 λ2.

© 2010 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(260.3090) Physical optics : Infrared, far

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 23, 2010
Revised Manuscript: April 20, 2010
Manuscript Accepted: April 21, 2010
Published: April 23, 2010

Citation
Hui Zhan, Rajind Mendis, and Daniel M. Mittleman, "Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides," Opt. Express 18, 9643-9650 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-9-9643


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003). [CrossRef] [PubMed]
  2. A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92(14), 143904 (2004). [CrossRef] [PubMed]
  3. M. M. Awad and R. A. Cheville, “Transmission terahertz waveguide-based imaging below the diffraction limit,” Appl. Phys. Lett. 86(22), 221107 (2005). [CrossRef]
  4. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006). [CrossRef] [PubMed]
  5. T. Monro, “Optical fibres: Beyond the diffraction limit,” Nat. Photonics 1(2), 89–90 (2007). [CrossRef]
  6. M. B. Johnston, “Superfocusing of terahertz waves,” Nat. Photonics 1(1), 14–15 (2007). [CrossRef]
  7. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]
  8. M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94(5), 051107 (2009). [CrossRef]
  9. V. Astley, R. Mendis, and D. M. Mittleman, “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” Appl. Phys. Lett. 95(3), 031104 (2009). [CrossRef]
  10. J. J. Thomson, Notes on Recent Researches in Electricity and Magnetism, (Clarendon, Oxford, 1893).
  11. L. Rayleigh, “On the passage of electric waves through tubes, or the vibrations of dielectric cylinders,” Philos. Mag. 43, 125–132 (1897).
  12. J. C. Slater, Microwave Transmission, (McGraw-Hill, New York, 1942).
  13. D. H. Baird, R. M. Fristrom, and M. H. Sirvetz, “Stark effect absorption cells for microwave spectroscopy,” Rev. Sci. Instrum. 21(10), 881 (1950). [CrossRef] [PubMed]
  14. S. A. Marshall and J. Weber, “Plane parallel plate transmission line stark microwave spectrograph,” Rev. Sci. Instrum. 28(2), 134–137 (1957). [CrossRef]
  15. N. R. Wild, “Photoetched microwave transmission lines,” IRE Trans. Microwave Theor. Tech. 3(2), 21–30 (1955). [CrossRef]
  16. K. S. Packard, “The origin of waveguides: a case of multiple rediscovery,” IEEE Trans. Microw. Theory Tech. 32(9), 961–969 (1984). [CrossRef]
  17. N. Marcuvitz, Waveguide Handbook, (Peregrinus, London, 1993).
  18. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25(9), 2511–2521 (2007). [CrossRef]
  19. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005). [CrossRef]
  20. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007). [CrossRef]
  21. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001). [CrossRef]
  22. R. Mendis and D. Grischkowsky, “THz interconnect with low loss and low group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001). [CrossRef]
  23. A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Nanoconcentration of terahertz radiation in plasmonic waveguides,” Opt. Express 16(23), 18576–18589 (2008). [CrossRef]
  24. N. Klein, P. Lahl, U. Poppe, F. Kadlec, and P. Kužel, “A metal-dielectric antenna for terahertz near-field imaging,” J. Appl. Phys. 98(1), 014910 (2005). [CrossRef]
  25. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguide,” Appl. Phys. Lett. 89(4), 041111 (2006). [CrossRef]
  26. V. Astley, H. Zhan, R. Mendis, and D. M. Mittleman, “A study of background signals in terahertz apertureless near-field microscopy and their use for scattering-probe imaging,” J. Appl. Phys. 105(11), 113117 (2009). [CrossRef]
  27. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999). [CrossRef]
  28. A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile charge carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008). [CrossRef] [PubMed]
  29. M. Spasenović, D. van Oosten, E. Verhagen, and L. Kuipers, “Measurements of modal symmetry in subwavelength plasmonic slot waveguides,” Appl. Phys. Lett. 95(20), 203109 (2009). [CrossRef]
  30. N. Klein, P. Lahl, U. Poppe, F. Kadlec, and P. Kuzel, “A metal-dielectric antenna for terahertz near-field imaging,” J. Appl. Phys. 98(1), 014910 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited