OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9658–9663

Generation of terahertz radiation from ionizing two-color laser pulses in Ar filled metallic hollow waveguides

I. Babushkin, S. Skupin, and J. Herrmann  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 9658-9663 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1149 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The generation of THz radiation from ionizing two-color femtosecond pulses propagating in metallic hollow waveguides filled with Ar is numerically studied. We observe a strong reshaping of the low-frequency part of the spectrum. More precisely, after several millimeters of propagation the spectrum is extended from hundreds of GHz up to ~ 150 THz. For longer propagation distances, nearly single-cycle near-infrared pulses with wavelengths around 4.5 μm are obtained by appropriate spectral filtering, with an efficiency of 0.1–1%.

© 2010 Optical Society of America

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(260.5210) Physical optics : Photoionization
(300.6270) Spectroscopy : Spectroscopy, far infrared

ToC Category:
Nonlinear Optics

Original Manuscript: February 25, 2010
Revised Manuscript: March 29, 2010
Manuscript Accepted: April 8, 2010
Published: April 23, 2010

I. Babushkin, S. Skupin, and J. Herrmann, "Generation of terahertz radiation from ionizing two-color laser pulses in Ar filled metallic hollow waveguides," Opt. Express 18, 9658-9663 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Cook, and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett. 25, 1210 (2000). [CrossRef]
  2. T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, “Generation of single-cycle THz transients with high electric-field amplitudes,” Opt. Lett. 30, 2805 (2005). [CrossRef] [PubMed]
  3. X. Xie, J. Dai, and X.-C. Zhang, “Coherent Control of THz Wave Generation in Ambient Air,” Phys. Rev. Lett. 96, 075005 (2006). [CrossRef] [PubMed]
  4. J. Dai, X. Xie, and X.-C. Zhang, “Detection of Broadband Terahertz Waves with a Laser-Induced Plasma in Gases,” Phys. Rev. Lett. 97, 103903 (2006). [CrossRef] [PubMed]
  5. K. Reimann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys. 70, 1597 (2007). [CrossRef]
  6. M. D. Thomson, M. Kreß, T. Löffler, and H. G. Roskos, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photon. Rev. 1, 349 (2007). [CrossRef]
  7. K.-Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15, 4577 (2007). [CrossRef] [PubMed]
  8. K.-Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605 (2008). [CrossRef]
  9. K.-Y. Kim, “Generation of coherent terahertz radiation in ultrafast laser-gas interactions,” Phys. Plasmas 16, 056706 (2009). [CrossRef]
  10. J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent Polarization Control of Terahertz Waves Generated from Two-Color Laser-Induced Gas Plasma,” Phys. Rev. Lett. 103, 023001 (2009). [CrossRef] [PubMed]
  11. T. D. Wang, Z.-M. Sheng, H.-C. Wu, M. Chen, C. Li, J. Zhang, and K. Mima, “Strong terahertz pulse generation by chirped laser pulses in tenuous gases,” Opt. Express 16, 16999 (2008). [CrossRef] [PubMed]
  12. M. Chen, A. Pukhov, X.-Y. Peng, and O. Willi, “Theoretical analysis and simulations of strong terahertz radiation from the interaction of ultrashort laser pulses with gases,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78, 046406 (2008). [CrossRef]
  13. M. Kreß, T. Löffler, M. D. Thomson, R. Dörner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, and H. G. Roskos, “Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz emission spectroscopy,” Nat. Phys. 2, 325 (2006). [CrossRef]
  14. V. B. Gildenburg, and N. V. Vvedinskii, “Optical-to-THz Wave Conversion via Excitation of Plasma Oscillations in the Tunneling-Ionization Process,” Phys. Rev. Lett. 98, 245002 (2007). [CrossRef] [PubMed]
  15. H.-C. Wu, J. Meyer-ter-Vehn, and Z.-M. Sheng, “Single-cycle powerful megawatt to gigawatt terahertz pulse radiated from a wavelength-scale plasma oscillator,” N. J. Phys. 10, 043001 (2008). [CrossRef]
  16. A. A. Silaev, and N. V. Vvedenskii, “Residual-Current Excitation in Plasmas Produced by Few-Cycle Laser Pulses,” Phys. Rev. Lett. 102, 115005 (2009). [CrossRef] [PubMed]
  17. A. A. Silaev, and N. V. Vvedenskii, “Quantum-mechanical approach for calculating the residual quasi-dc current in a plasma produced by a few-cycle laser pulse,” Phys. Scr. T 135, 014024 (2009). [CrossRef]
  18. C. G. Durfee, A. R. Rundquist, S. Backus, C. Herne, M. H. Murnane, and H. C. Kapteyn, “Phase Matching of High-Order Harmonics in Hollow Waveguides,” Phys. Rev. Lett. 83, 2187 (1999). [CrossRef]
  19. E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, “Coherent soft x-ray generation in the water window with quasi-phase matching,” Science 302, 95 (2003). [CrossRef] [PubMed]
  20. P. Sprangle, J. R. Peñano, B. Hafizi, and C. A. Kapetanakos, “Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 066415 (2004). [CrossRef]
  21. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633 (2007). [CrossRef]
  22. L. D. Landau, and E. M. Lifshitz, Quantum Mechanics (Pergamon, New York, 1965), 2nd ed., p. 276.
  23. A. V. Husakou, and J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett. 87, 203901 (2001). [CrossRef] [PubMed]
  24. P. Tzankov, O. Steinkellner, J. Zheng, M. Mero, W. Freyer, A. Husakou, I. Babushkin, J. Herrmann and F. Noack, “High-power fifth-harmonic generation of femtosecond pulses in the vacuum ultraviolet using a Ti:sapphire laser,”, Opt. Express 15, 6389 (2007). [CrossRef] [PubMed]
  25. I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast spatio-temporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases,” http://arxiv.org/abs/1003.1900.
  26. E. A. V. Markatili, and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1784 (1964).
  27. Handbook of Optics, ed. by M. Bass, McGraw-Hill, (1994).
  28. P. J. Leonard, “Refractive indices, Verdet constants and polarizabilities for inert gases,” At. Data Nucl. Data Tables 14, 21 (1974). [CrossRef]
  29. W. M. Wood, C. W. Siders, and M. C. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett. 67, 3523 (1991). [CrossRef] [PubMed]
  30. S. C. Rae, and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46, 1084 (1992). [CrossRef] [PubMed]
  31. X. M. Tong, and C. D. Lin, “Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier-suppression regime,” J. Phys. At. Mol. Opt. Phys. 38, 2593 (2005). [CrossRef]
  32. N. Karpowicz, X. Lu, and X.-C. Zhang, “The role of tunnel ionization in terahertz gas photonics,” Laser Phys. 19, 1535 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited