OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9664–9670

Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser

Yu-Shan Juan and Fan-Yi Lin  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 9664-9670 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1156 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrated the ultra-wideband (UWB) signal generation utilizing nonlinear dynamics of an optical pulse-injected semiconductor laser. The UWB signals generated are fully in compliant with the FCC mask for indoor radiation, while a large fractional bandwidth of 93% is achieved. To show the feasibility of UWB-over-fiber, transmission over a 2 km single-mode fiber and a wireless channel utilizing a pair of broadband antennas are examined. Moreover, proof of concept experiment on data encoding and decoding with 250 Mb/s in the optical pulse-injected laser is successfully demonstrated.

© 2010 Optical Society of America

OCIS Codes
(140.3520) Lasers and laser optics : Lasers, injection-locked
(140.5960) Lasers and laser optics : Semiconductor lasers
(190.3100) Nonlinear optics : Instabilities and chaos
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 26, 2010
Revised Manuscript: April 21, 2010
Manuscript Accepted: April 22, 2010
Published: April 23, 2010

Yu-Shan Juan and Fan-Yi Lin, "Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser," Opt. Express 18, 9664-9670 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Porcine, P. Research, and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41, 66–74 (2003). [CrossRef]
  2. Federal Communications Commission, “Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,” (2002).
  3. Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultra-wideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31, 3083–3085 (2006). [CrossRef] [PubMed]
  4. J. Li, Y. Liang, and K. K. Y. Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1172–1174 (2009). [CrossRef]
  5. F. Zeng, and J. P. Yao, “An approach to ultra-wideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 31, 823–825 (2006). [CrossRef]
  6. Q. Wang, and J. Yao, “UWB doublet generation using nonlinearly biased electro-optic intensity modulator,” Electron. Lett. 42, 1304–1305 (2006). [CrossRef]
  7. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17, 5023–5032 (2009). [CrossRef] [PubMed]
  8. J. Wang, Q. Sun, J. Sun, and W. Zhang, “All-optical UWB pulse generation using sum-frequency generation in a PPLN waveguide,” Opt. Express 17, 3521–3530 (2009). [CrossRef] [PubMed]
  9. M. Abtahi, M. Mirshafiei, J. Magne, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning,” J. Lightwave Technol. 20, 135–137 (2008).
  10. X. Yu, T. B. Gibbon, M. Pawlik, S. Blaaberg, and I. T. Monroy, “A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser,” Opt. Express 17, 9680–9687 (2009). [CrossRef] [PubMed]
  11. Y. S. Juan, and F. Y. Lin, “Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser,” Opt. Express 17, 18596–18605 (2009). [CrossRef]
  12. Y. S. Juan, and F. Y. Lin, “Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser,” Opt. Lett. 34, 1636–1638 (2009). [CrossRef] [PubMed]
  13. F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron. 15, 604–611 (2009). [CrossRef]
  14. E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16, 6609–6618 (2008). [CrossRef] [PubMed]
  15. J. B. Jensen, R. Rodes, A. Caballero, X. Yu, T. B. Gibbon, and I. T. Monroy, “4 Gbps impulse radio (IR) ultra-wideband (UWB) transmission over 100 meters multi mode fiber with 4 meters wireless transmission,” Opt. Express 17, 16898–16903 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited