OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9690–9711

Multi-angle lensless digital holography for depth resolved imaging on a chip

Ting-Wei Su, Serhan O. Isikman, Waheb Bishara, Derek Tseng, Anthony Erlinger, and Aydogan Ozcan  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 9690-9711 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (12188 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A multi-angle lensfree holographic imaging platform that can accurately characterize both the axial and lateral positions of cells located within multi-layered micro-channels is introduced. In this platform, lensfree digital holograms of the micro-objects on the chip are recorded at different illumination angles using partially coherent illumination. These digital holograms start to shift laterally on the sensor plane as the illumination angle of the source is tilted. Since the exact amount of this lateral shift of each object hologram can be calculated with an accuracy that beats the diffraction limit of light, the height of each cell from the substrate can be determined over a large field of view without the use of any lenses. We demonstrate the proof of concept of this multi-angle lensless imaging platform by using light emitting diodes to characterize various sized microparticles located on a chip with sub-micron axial and lateral localization over ~60 mm2 field of view. Furthermore, we successfully apply this lensless imaging approach to simultaneously characterize blood samples located at multi-layered micro-channels in terms of the counts, individual thicknesses and the volumes of the cells at each layer. Because this platform does not require any lenses, lasers or other bulky optical/mechanical components, it provides a compact and high-throughput alternative to conventional approaches for cytometry and diagnostics applications involving lab on a chip systems.

© 2010 OSA

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(170.1530) Medical optics and biotechnology : Cell analysis
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: March 15, 2010
Revised Manuscript: April 21, 2010
Manuscript Accepted: April 22, 2010
Published: April 23, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Ting-Wei Su, Serhan O. Isikman, Waheb Bishara, Derek Tseng, Anthony Erlinger, and Aydogan Ozcan, "Multi-angle lensless digital holography for depth resolved imaging on a chip," Opt. Express 18, 9690-9711 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006). [CrossRef] [PubMed]
  2. T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77(3), 977–1026 (2005). [CrossRef]
  3. D. R. Meldrum and M. R. Holl, “Tech.Sight. Microfluidics. Microscale bioanalytical systems,” Science 297(5584), 1197–1198 (2002). [CrossRef] [PubMed]
  4. J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006). [CrossRef] [PubMed]
  5. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006). [CrossRef] [PubMed]
  6. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006). [CrossRef] [PubMed]
  7. S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007). [CrossRef] [PubMed]
  8. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005.
  9. D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009)
  10. W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt. 31(24), 4973–4978 (1992). [CrossRef] [PubMed]
  11. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001). [CrossRef] [PubMed]
  12. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41(22), 4489–4496 (2002). [CrossRef] [PubMed]
  13. L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29(10), 1132–1134 (2004). [CrossRef] [PubMed]
  14. C. Mann, L. Yu, C. M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005). [CrossRef] [PubMed]
  15. B. Javidi, I. Moon, S. K. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13(12), 4492–4506 (2005). [CrossRef] [PubMed]
  16. J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Immersion digital in-line holographic microscopy,” Opt. Lett. 31(9), 1211–1213 (2006). [CrossRef] [PubMed]
  17. P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett. 31(10), 1405–1407 (2006). [CrossRef] [PubMed]
  18. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006). [CrossRef] [PubMed]
  19. M. DaneshPanah and B. Javidi, “Tracking biological microorganisms in sequence of 3D holographic microscopy images,” Opt. Express 15(17), 10761–10766 (2007). [CrossRef] [PubMed]
  20. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007). [CrossRef] [PubMed]
  21. M. Mir, Z. Wang, K. Tangella, and G. Popescu, “Diffraction Phase Cytometry: Blood on a CD-Rom,” Opt. Express 17(4), 2579–2585 (2009). [CrossRef] [PubMed]
  22. G. Popescu, “Quantitative phase imaging of nanoscale cell structure and dynamics,” Methods in Cell Biology, B. Jena, ed. (Elsevier, 2008) [PubMed]
  23. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008). [CrossRef]
  24. S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009). [CrossRef] [PubMed]
  25. C. Oh, S. O. Isikman, B. Khademhosseinieh, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express 18(5Issue 5), 4717–4726 (2010). [CrossRef] [PubMed]
  26. S. O. Isikman, I. Sencan, O. Mudanyali, W. Bishara, C. Oztoprak, and A. Ozcan, “Color and monochrome lensless on-chip imaging of Caenorhabditis elegans over a wide field-of-view,” Lab Chip 10(9), 1109–1112 (2010). [CrossRef] [PubMed]
  27. N. G. Clack, K. Salaita, and J. T. Groves, “Electrostatic readout of DNA microarrays with charged microspheres,” Nat. Biotechnol. 26(7), 825–830 (2008). [CrossRef] [PubMed]
  28. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45(16), 3893–3901 (2006). [CrossRef] [PubMed]
  29. S. Lee, Y. Roichman, G. Yi, S. Kim, S. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15(26), 18275–18282 (2007). [CrossRef] [PubMed]
  30. F. Soulez, L. Denis, C. Fournier, E. Thiebaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A 24(4), 1164–1171 (2007). [CrossRef]
  31. G. Situ and J. T. Sheridan, “Holography: an interpretation from the phase-space point of view,” Opt. Lett. 32(24), 3492–3494 (2007). [CrossRef] [PubMed]
  32. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3(1), 27–29 (1978). [CrossRef] [PubMed]
  33. P. B. Canham and A. C. Burton, “Distribution of size and shape in populations of normal human red cells,” Circ. Res. 22(3), 405–422 (1968). [PubMed]
  34. A. N. Shvalov, J. T. Soini, A. V. Chernyshev, P. A. Tarasov, E. Soini, and V. P. Maltsev, “Light-scattering properties of individual erythrocytes,” Appl. Opt. 38(1), 230–235 (1999). [CrossRef]
  35. J. Ares and J. Arines, “Influence of thresholding on centroid statistics: full analytical description,” Appl. Opt. 43(31), 5796–5805 (2004). [CrossRef] [PubMed]
  36. J. S. Morgan, D. C. Slater, J. G. Timothy, and E. B. Jenkins, “Centroid position measurements and subpixel sensitivity variations with the MAMA detector,” Appl. Opt. 28(6), 1178–1192 (1989). [CrossRef] [PubMed]
  37. B. F. Alexander and K. C. Ng, “Elimination of systematic error in subpixel accuracy centroid estimation,” Opt. Eng. 30(9), 1320–1331 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited