OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S2 — Jun. 21, 2010
  • pp: A147–A160

Photoelectrolysis of water: Solar hydrogen–achievements and perspectives

Kȩstutis Juodkazis, Jurga Juodkazytė, Edgaras Jelmakas, Putinas Kalinauskas, Ignas Valsiūnas, Povilas Miečinskas, and Saulius Juodkazis  »View Author Affiliations

Optics Express, Vol. 18, Issue S2, pp. A147-A160 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1605 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Thermodynamic analysis of energy conversion from light-to-chemical, light-to-electric and electric-to-chemical is presented by the case study of water photoelectrolysis on TiO2 surface. It is demonstrated that at the current state-of-the-art energy conversion efficiency of water photoelectrolysis can be increased ∼17 times by separating the processes of solar-to-electric and electric-to-chemical energy conversion and optimizing them independently. This allows to mitigate a high overvoltage of oxygen evolution reaction with respect to thermodynamic E O 2 / H 2 O 0 = 1.23 V potential as well as spectrally narrow absorbtivity of solar light by TiO2 which determine the low efficiency (∼ 1.0%) of direct light-to-chemical energy conversion. Numerical estimates are provided illustrating practical principles for optimization of the solar energy conversion and storage processes.

© 2010 OSA

OCIS Codes
(240.6670) Optics at surfaces : Surface photochemistry
(350.5130) Other areas of optics : Photochemistry
(350.6050) Other areas of optics : Solar energy
(350.6670) Other areas of optics : Surface photochemistry

ToC Category:
Solar Fuel

Original Manuscript: March 22, 2010
Revised Manuscript: May 20, 2010
Manuscript Accepted: May 20, 2010
Published: May 25, 2010

Kȩstutis Juodkazis, Jurga Juodkazytė, Edgaras Jelmakas, Putinas Kalinauskas, Ignas Valsiūnas, Povilas Miečinskas, and Saulius Juodkazis, "Photoelectrolysis of water: Solar hydrogen–achievements and perspectives," Opt. Express 18, A147-A160 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Fujishima, X. Zhang, D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63, 515–582 (2008). [CrossRef]
  2. G. W. Crabtree, N. S. Lewis, “Solar energy conversion,” Physics Today 60, 37 – 42 (2007). [CrossRef]
  3. M. Ni, M. K. H. Leung, D. Y. Leung, K. Sumathy, “A review and recent developments in photocatalytic water splitting using TiO2 for hydrogen production,” Renew. and Sustain. Ener. Rev. 11, 401–425 (2007). [CrossRef]
  4. P. V. Kamat, “Meeting the clean energy demand: Nanostructure architectures for solar energy conversion,” J. Phys. Chem. C 111, 2834–2860 (2007). [CrossRef]
  5. J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. I. functional properties,” Int. J. Hydr. Energ. 32, 2609–2629 (2007). [CrossRef]
  6. J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. III. kinetic effects,” Int. J. Hydr. Energ. 32, 2644–2650 (2007). [CrossRef]
  7. J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. IV. collective and local factors in photolysis of water,” Int. J. Hydr. Energ. 32, 2651–2659 (2007). [CrossRef]
  8. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, “A review on highly-ordered TiO2 nanotube-arrays: fabrication, material properties, and solar energy applications,” Solar Ener. Mat. and Solar Cells 90, 2011–2075 (2006). [CrossRef]
  9. A. L. Linsebigler, G. Lu, J.T. Yates, “Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results,” Chem. Rev. 95, 735–758 (1995). [CrossRef]
  10. T. Tachikawa, M. Fujitsuka, T. Majima, “Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts,” J. Phys. Chem. C 111, 5259– 5275 (2007). [CrossRef]
  11. V. M. Aroutiounian, V. M. Arakelyan, G. E. Shahnazaryan, “Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting,” Solar Energy 78, 581–592 (2005). [CrossRef]
  12. M. Grätzel, “Photoelectrochemical cells,” Nature 414, 338– 344 (2001). [CrossRef] [PubMed]
  13. T. W. Murphy, “Home photovoltaic systems for physicists,” Physics Today, 42– 47 (2008). [CrossRef]
  14. A. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238, 37–38 (1972). [CrossRef] [PubMed]
  15. E. L. Miller, D. Paluselli, B. Marsen, R. E. Rocheleau, “Development of reactively sputtered metal oxide films for hydrogen-producing hybrid multijunction photoelectrodes,” Solar Energ. Mat. and Solar Cells 88(2), 131–144 (2005). [CrossRef]
  16. Comparison of photon energy with potential E0 = 1.23 V. According to ΔG = –nFE0, where G represents the isobaric-isothermal potential (Gibbs energy) of the reaction or the chemical potential of the substance, n is the number of electrons, and F is the Faraday constant, in the case of formation of water molecule H2 + ½O2 = H2O, one would find: ΔG = −2 × 96500 × 1.23 = −2.37390 × 105 (J mol−1). As there are two H-O bonds in H2O molecule, the energy corresponding to one bond is 18695 J mol−1 or 7.409 × 1023 eV mol−1. Division of the latter value by Avogadro number NA = 6.02 × 1023, gives the energy of one chemical bond, 1.23 eV. This is the minimum photon energy required to break the bond between H and O in H2O molecule.
  17. T. Lana-Villarreal, R. Gomez, “Interfacial electron transfer at TiO2 nanostructured electrodes modified with capped gold nanoparticles: The photoelectrochemistry of water oxidation,” Electrochem. Comm. 7, 1218–1224 (2005). [CrossRef]
  18. M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, “Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis,” J. Power Sources 181, 46–55 (2008). [CrossRef]
  19. R. Beranek, H. Kisch, “Surface-modified anodic TiO2 films for visible light photocurrent response,” Electrochem. Comm. 9, 761–766 (2007). [CrossRef]
  20. Y. Tian, T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005). [CrossRef] [PubMed]
  21. Z. Zou, J. Ye, K. Sayama, H. Arakawa, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,” Nature 414, 625–627 (2001). [CrossRef] [PubMed]
  22. J. Juodkazytė, B. Šebeka, P. Kalinauskas, K. Juodkazis, “Light energy accumulation using Ti/RuO2 electrode as capacitor,” J. Sol. Stat. Electrochem. 14, 741–746 (2010). [CrossRef]
  23. M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humpry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” J. Am. Chem. Soc. 123, 1613–1624 (2001). [CrossRef] [PubMed]
  24. A. Survila, P. Kalinauskas, I. Valsiūnas, “Photoelektrochemical properties of surface layers formed by anodic oxidation of titanium,” Chemija 10, 117–121 (1999).
  25. B. Parkinson, “On the efficiency and stability of photoelectrochemical. devices,” Acc. Chem. Res. 17, 431–437 (1984). [CrossRef]
  26. U. S. Avachat, A. H. Jahagirdar, N. G. Dhere, “Multiple bandgap combination of thin film photovoltaic cells and a photoanode for efficient hydrogen and oxygen generation by water splitting,” Solar Energ. Mat. and Solar Cells 90, 2464–2470 (2006). [CrossRef]
  27. S. Juodkazis, A. Yamaguchi, H. Ishii, S. Matsuo, H. Takagi, H. Misawa, “Photo-electrochemical deposition of platinum on TiO2 with resolution of tens-of-nm by using a mask elaborated with electron-beam lithography,” Jpn. J. Appl. Phys. 40, 4246–4251 (2001). [CrossRef]
  28. P. Salvador, “Kinetic approach to the photocurrent transients in water photoelectrolysis at n-titanium dioxide electrodes. 1. analysis of the ratio of the instantaneous to steady-state photocurrent,” J. Phys. Chem. C 89, 3683–3869 (1985).
  29. K. J. Vetter, Elektrochemische kinetik (Springer-Verlag, Berlin-Gottingen, 1961).
  30. N. Sato, Electrochemistry at metal and semiconductor electrodes (Elsevier Science, Amsterdam, 1998).
  31. M. Pourbaix, Atlas d’équilibres électrochimiques (Gauthier-Villars, Paris, 1963). [PubMed]
  32. K. Juodkazis, J. Juodkazytė, T. Juodienė, V. Šukienė, I. Savickaja, “Alternative view of anodic surface oxidation of noble metals,” Electrochimica Acta 51, 6159–6164 (2006). [CrossRef]
  33. K. Juodkazis, J. Juodkazytė, Y. Tabuchi, S. Juodkazis, S. Matsuo, H. Misawa, “Deposition of platinum and irridium on Ti surface using femtosecond laser and electrochemical activation,” Lith. J. Phys. 43, 209–216 (2003).
  34. D. Dobos, Electrochemical Data (Mir, Moscow, 1980).
  35. P. Salvador, C. Gutierrez, “The nature of surface states involved in the photo- and electroluminescence spectra of n-titanium dioxide electrodes,” J. Phys. Chem. C 84, 3696–3698 (1984).
  36. C. Gutierrez, P. Salvador, “Mechanisms of competitive photoelectrochemical oxidation of I and H2O at n-TiO2 electrodes: A kinetic approach,” J. Electrochem. Soc. 133, 924–929 (1986). [CrossRef]
  37. J. Juodkazytė, R. Vilkauskaitė, B. Šebeka, K. Juodkazis, “Difference between surface electrochemistry of ruthenium and RuO2 electrodes,” Transact. Inst. of Metal Finishing 85, 194–201 (2007). [CrossRef]
  38. K. Juodkazis, J. Juodkazytė, R. Vilkauskaitė, V. Jasulaitienė, “Nickel surface anodic oxidation and electrocatalysis of oxygen evolution,” J. Sol. Stat. Electrochem. 12, 1469–1479 (2008). [CrossRef]
  39. K. Juodkazis, J. Juodkazytė, V. Šukienė, A. Grigucevičienė, A. Selskis, “On the charge storage mechanism at RuO2/0.5 M H2SO4 interface,” J. Sol. Stat. Electrochem. 12, 1399–1404 (2008). [CrossRef]
  40. K. Juodkazis, J. Juodkazytė, R. Vilkauskaitė, B. Šebeka, V. Jasulaitienė, “Oxygen evolution on mixed ruthenium and nickel oxide electrode,” Chemija 19, 1–6 (2008).
  41. R. Nakamura, Y. Nakato, “In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions,” J. Am. Chem. Soc. 126, 1290–1298 (2004). [CrossRef] [PubMed]
  42. R. Nakamura, T. Okamura, N. Ohashi, A. Imanishi, Y. Nakato, “Molecular mechanisms of photoinduced oxygen evolution, PL emission, and surface roughening at atomically smooth (110) and (100) n-TiO2 (rutile) surfaces in aqueous acidic solutions,” J. Am. Chem. Soc. 127, 12975–12983 (2005). [CrossRef] [PubMed]
  43. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, “Solar cell efficiency tables (version 31),” Prog. Photovolt. 16, 61–67 (2008). [CrossRef]
  44. W. A. Badawy, “Effect of porous silicon layer on the performance of Si/oxide photovoltaic and photoelectrochemical cells,” J. Alloys and Compounds 464, 347–351 (2008). [CrossRef]
  45. N. Dhere, A. H. Jahagirdar, “Photoelectrochemical water splitting for hydrogen production using combination of CIGS2 solar cell and RuO2 photocatalyst,” Thin Solid Films 480–481, 462–465 (2005). [CrossRef]
  46. S. Pillipai, K. R. Catchpole, T. Trupke, M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007). [CrossRef]
  47. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006). [CrossRef] [PubMed]
  48. E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mat. 16, 1686– 1708 (2004). [CrossRef]
  49. J. Lee, J. Park, J. Kim, D. Lee, K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Organic Electronics 10, 416–420 (2009). [CrossRef]
  50. Y. Tian, T. Tatsuma, “Mechanismsand applications of plasmon-induced charge separationat tio2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005). [CrossRef] [PubMed]
  51. C. Chou, R. Yang, C. Yeh, Y. Lin, “Preparation of tio2/nano-metal composite particles and thier applications in dye-sensitized solar cells,” Powder Technol. 194, 95–105 (2009). [CrossRef]
  52. T. Hasobe, H. Imahori, S. Fukuzumi, P. V. Kamat, “Nanostructured assembly of porphyrin clusters for light energyconversion,” J. Mater. Chem. 13, 2515–2520 (2003). [CrossRef]
  53. H. Imahori, T. Umeyama, “Donor-acceptor nanoarchitecture on semiconducting electrodes forsolar energy conversion,” J. Phys. Chem. C 113, 9029–9039 (2009). [CrossRef]
  54. Y. Yokota, K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, H. Misawa, “Optical characterization of plasmonic metallic nanostructures fabricated by high-resolution lithography,” J. Nanophotonics 1, 011594 (2008). [CrossRef]
  55. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mat. 20, 26–29 (2008). [CrossRef]
  56. K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, H. Misawa, “Optical properties of nano-engineered gold blocks,” Opt. Lett. 30, 2158–2160 (2005). [CrossRef] [PubMed]
  57. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Spectrally-resolved atomic-scale variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006). [CrossRef] [PubMed]
  58. V. Mizeikis, E. Kowalska, S. Juodkazis, “Resonant localization, enhancement, and polarization of optical fields in nano-scale interface regions for photo-catalytic applications,” J. Nanosci. Nanotechnol.2010 (in press).
  59. K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, “29.5 percent-efficient GaInP/GaAs tandem solar cells,” Appl. Phys. Lett. 65, 989–991 (1994). [CrossRef]
  60. J. H. Zhao, A. H. Wang, M. A. Green, F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells”, Appl. Phys. Lett. 73, 1991–1993 (1998). [CrossRef]
  61. L. Han, A. Islam, N. Koide, R. Yamanaka, “Alternative technology enables large-area solar-cell production,” SPIE Newsroom, doi: (2009). [CrossRef]
  62. L. Carrette, K.A. Friedrich, U. Stimming, “Fuel cells: Fundamentals and applications,” Fuel Cells 1, 5–39 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited