OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S2 — Jun. 21, 2010
  • pp: A174–A184

Enhancement of light scattering and photoluminescence in electrospun polymer nanofibers

Chun-Ching Chang, Chun-Min Huang, Yi-Hao Chang, and Changshu Kuo  »View Author Affiliations


Optics Express, Vol. 18, Issue S2, pp. A174-A184 (2010)
http://dx.doi.org/10.1364/OE.18.00A174


View Full Text Article

Enhanced HTML    Acrobat PDF (1628 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Poly(methyl methacrylate) nanofibers with desired fiber diameters that ranged from 336 to 896 nm were electrospun as light scattering and propagation materials. The light scattering behavior of these samples as a function of the fiber diameter and fiber deposition thickness was examined by UV-vis spectrophotometry, which revealed the scattering bands in the absorption spectra. The scattering bands of these nanofibers were linearly proportional to the fiber diameter, which shows good agreement with a scattering model based on the Mie theory. The light scattering and prolonged light path lengths in the nanofiber scaffolds were monitored and quantified by the photoluminescence of a fluorescent dye, Coumarin 6, which was preloaded into the polymer nanofibers. The photoluminescence after proper normalization showed a second-order dependence on the dye loading per unit area, which is significantly different from the spin-coated thin-film samples following a first-order relationship. Nonlinear photoluminescence enhancements indicated prolonged light path lengths and multiple light absorptions within the fiber scaffolds as a result of light scattering. Even with relatively broad scattering band widths, the light scattering and photoluminescence of the electrospun nanofibers exhibited considerable wavelength selectivity, especially as the scattering bands overlapped with the excitation wavelengths of the fluorescence reagent.

© 2010 OSA

OCIS Codes
(260.2510) Physical optics : Fluorescence
(290.4020) Scattering : Mie theory
(290.4210) Scattering : Multiple scattering
(350.5500) Other areas of optics : Propagation
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Scattering

History
Original Manuscript: April 1, 2010
Revised Manuscript: May 16, 2010
Manuscript Accepted: May 24, 2010
Published: May 27, 2010

Citation
Chun-Ching Chang, Chun-Min Huang, Yi-Hao Chang, and Changshu Kuo, "Enhancement of light scattering and photoluminescence in electrospun polymer nanofibers," Opt. Express 18, A174-A184 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-S2-A174


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Srinivasan and D. H. Reneker, “Structure and morphology of small diameter electrospun aramid fibers,” Polym. Int. 36(2), 195–201 (1995). [CrossRef]
  2. D. H. Reneker and I. Chun, “Nanometer diameter fibers of polymer, produced by electrospinning,” Nanotechnology 7(3), 216–223 (1996). [CrossRef]
  3. M. T. Hunley and T. E. Long, “Electrospinning functional nanoscale fibers: a perspective for the future,” Polym. Int. 57(3), 385–389 (2008). [CrossRef]
  4. T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, and S. S. Ramkumar, “Electrospinning of nanofibers,” J. Appl. Polym. Sci. 96(2), 557–569 (2005). [CrossRef]
  5. K. P. Rajesh and T. S. Natarajan, “Electrospun polymer nanofibrous membrane for filtration,” J. Nanosci. Nanotechnol. 9(9), 5402–5405 (2009). [CrossRef] [PubMed]
  6. K. Desai, K. Kit, J. Li, P. M. Davidson, S. Zivanovic, and H. Meyer, “Nanofibrous chitosan non-wovens for filtration applications,” Polymer (Guildf.) 50(15), 3661–3669 (2009). [CrossRef]
  7. A. C. Patel, S. Li, C. Wang, W. Zhang, and Y. Wei, “Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications,” Chem. Mater. 19(6), 1231–1238 (2007). [CrossRef]
  8. D. Lin, H. Wu, R. Zhang, and W. Pan, “Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers,” Chem. Mater. 21(15), 3479–3484 (2009). [CrossRef]
  9. S. Chakraborty, I. C. Liao, A. Adler, and K. W. Leong, “Electrohydrodynamics: A facile technique to fabricate drug delivery systems,” Adv. Drug Deliv. Rev. 61(12), 1043–1054 (2009). [CrossRef] [PubMed]
  10. N. Ashammakhi, I. Wimpenny, L. Nikkola, and Y. Yang, “Electrospinning: methods and development of biodegradable nanofibres for drug release,” J Biomed Nanotechnol 5(1), 1–19 (2009). [CrossRef]
  11. X. Wang, Y.-G. Kim, C. Drew, B.-C. Ku, J. Kumar, and L. A. Samuelson, “Electrostatic assembly of conjugated polymer thin layers on electrospun nanofibrous membranes for biosensors,” Nano Lett. 4(2), 331–334 (2004). [CrossRef]
  12. J. M. Rathfon, Z. M. Al-Badri, R. Shunmugam, S. M. Berry, S. Pabba, R. S. Keynton, R. W. Cohn, and G. N. Tew, “Fluorimetric nerve gas sensing based on pyrene imines incorporated into films and sub-micrometer fibers,” Adv. Funct. Mater. 19(5), 689–695 (2009). [CrossRef]
  13. G.-M. Kim, G. H. Michler, and P. Potschke, “Deformation processes of ultrahigh porous multiwalled carbon nanotubes/polycarbonate composite fibers prepared by electrospinning,” Polymer (Guildf.) 46(18), 7346–7351 (2005). [CrossRef]
  14. D. Blond, W. Walshe, K. Young, F. M. Blighe, U. Khan, D. Almecija, L. Carpenter, J. McCauley, W. J. Blau, and J. N. Coleman, “Strong, tough, electrospun polymer-nanotube composite membranes with extremely low density,” Adv. Funct. Mater. 18(17), 2618–2624 (2008). [CrossRef]
  15. S. G. Kumbar, R. James, S. P. Nukavarapu, and C. T. Laurencin, “Electrospun nanofiber scaffolds: engineering soft tissues,” Biomed. Mater. 3(3), 034002 (2008). [CrossRef] [PubMed]
  16. S. Agarwal, J. H. Wendorff, and A. Greiner, “Progress in the field of electrospinning for tissue engineering applications,” Adv. Mater. 21(32-33), 3343–3351 (2009). [CrossRef]
  17. J.-Y. Chen, H.-C. Chen, J.-N. Lin, and C. Kuo, “Effects of polymer media on electrospun mesoporous titania nanofibers,” Mater. Chem. Phys. 107(2-3), 480–487 (2008). [CrossRef]
  18. X. Lu, C. Wang, and Y. Wei, “One-dimensional composite nanomaterials: synthesis by electrospinning and their applications,” Small 5(21), 2349–2370 (2009). [CrossRef] [PubMed]
  19. A. Camposeo, F. Di Benedetto, R. Stabile, A. A. R. Neves, R. Cingolani, and D. Pisignano, “Laser emission from electrospun polymer nanofibers,” Small 5(5), 562–566 (2009). [CrossRef] [PubMed]
  20. S. Madhugiri, A. Dalton, J. Gutierrez, J. P. Ferraris, and K. J. Balkus., “Electrospun MEH-PPV/SBA-15 composite nanofibers using a dual syringe method,” J. Am. Chem. Soc. 125(47), 14531–14538 (2003). [CrossRef] [PubMed]
  21. D. Li, A. Babel, S. A. Jenekhe, and Y. Xia, “Nanofibers of conjugated polymers prepared by electrospinning with a two-capillary spinneret,” Adv. Mater. 16(22), 2062–2066 (2004). [CrossRef]
  22. G. Kwak, S. Fukao, M. Fujiki, T. Sakaguchi, and T. Masuda, “Nanoporous, honeycomb-structured network fibers spun from semiflexible, ultrahigh molecular weight, disubstituted aromatic polyacetylenes: Superhierarchical Structure and Unique Optical Anisotropy,” Chem. Mater. 18(23), 5537–5542 (2006). [CrossRef]
  23. J. M. Moran-Mirabal, J. D. Slinker, J. A. DeFranco, S. S. Verbridge, R. Ilic, S. Flores-Torres, H. Abruña, G. G. Malliaras, and H. G. Craighead, “Electrospun light-emitting nanofibers,” Nano Lett. 7(2), 458–463 (2007). [CrossRef] [PubMed]
  24. A. Camposeo, F. Di Benedetto, R. Stabile, R. Cingolani, and D. Pisignano, “Electrospun dye-doped polymer nanofibers emitting in the near infrared,” Appl. Phys. Lett. 90(14), 143115 (2007). [CrossRef]
  25. H. Liu, J. B. Edel, L. M. Bellan, and H. G. Craighead, “Electrospun polymer nanofibers as subwavelength optical waveguides incorporating quantum dots,” Small 2(4), 495–499 (2006). [CrossRef] [PubMed]
  26. F. Di Benedetto, A. Camposeo, S. Pagliara, E. Mele, L. Persano, R. Stabile, R. Cingolani, and D. Pisignano, “Patterning of light-emitting conjugated polymer nanofibres,” Nat. Nanotechnol. 3(10), 614–619 (2008). [CrossRef] [PubMed]
  27. B. Carlberg, T. Wang, and J. Liu, “Direct photolithographic patterning of electrospun films for defined nanofibrillar microarchitectures,” Langmuir 26(4), 2235–2239 (2010). [CrossRef] [PubMed]
  28. H. Seel and R. Brendel, “Optical absorption in crystalline Si films containing spherical voids for internal light scattering,” Thin Solid Films 451–452, 608–611 (2004). [CrossRef]
  29. A. Wolf, B. Terheiden, and R. Brendel, “Light scattering and diffuse light propagation in sintered porous silicon,” J. Appl. Phys. 104(3), 033106 (2008). [CrossRef]
  30. S. Pagliara, A. Camposeo, A. Polini, R. Cingolani, and D. Pisignano, “Electrospun light-emitting nanofibers as excitation source in microfluidic devices,” Lab Chip 9(19), 2851–2856 (2009). [CrossRef] [PubMed]
  31. H.-S. Shim, S.-I. Na, S. H. Nam, H.-J. Ahn, H. J. Kim, D.-Y. Kim, and W. B. Kim, “Efficient photovoltaic device fashioned of highly aligned multilayers of electrospun TiO2 nanowire array with conjugated polymer,” Appl. Phys. Lett. 92(18), 183107 (2008). [CrossRef]
  32. C.-C. Ho, W.-S. Chen, T.-Y. Shie, J.-N. Lin, and C. Kuo, “Novel fabrication of Janus particles from the surfaces of electrospun polymer fibers,” Langmuir 24(11), 5663–5666 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited