OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S2 — Jun. 21, 2010
  • pp: A207–A220

Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles

Fu-Ji Tsai, Jyh-Yang Wang, Jeng-Jie Huang, Yean-Woei Kiang, and C. C. Yang  »View Author Affiliations


Optics Express, Vol. 18, Issue S2, pp. A207-A220 (2010)
http://dx.doi.org/10.1364/OE.18.00A207


View Full Text Article

Enhanced HTML    Acrobat PDF (2217 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The simulation results of absorption enhancement in an amorphous-Si (a-Si) solar cell by depositing metal nanoparticles (NPs) on the device top and embedding metal NPs in a layer above the Al back-reflector are demonstrated. The absorption increase results from the near-field constructive interference of electromagnetic waves in the forward direction such that an increased amount of sunlight energy is distributed in the a-Si absorption layer. Among the three used metals of Al, Ag, and Au, Al NPs show the most efficient absorption enhancement. Between the two used NP geometries, Al nanocylinder (NC) are more effective in absorption enhancement than Al nanosphere (NS). Also, a random distribution of isolated metal NCs can lead to higher absorption enhancement, when compared with the cases of periodical metal NC distributions. Meanwhile, the fabrication of both top and bottom Al NCs in a solar cell results in further absorption enhancement. Misalignments between the top and bottom Al NCs do not significantly reduce the enhancement percentage. With a structure of vertically aligned top and bottom Al NCs, solar cell absorption can be increased by 52%.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.6050) Other areas of optics : Solar energy

ToC Category:
Photovoltaics

History
Original Manuscript: February 9, 2010
Revised Manuscript: May 28, 2010
Manuscript Accepted: June 1, 2010
Published: June 9, 2010

Citation
Fu-Ji Tsai, Jyh-Yang Wang, Jeng-Jie Huang, Yean-Woei Kiang, and C. C. Yang, "Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles," Opt. Express 18, A207-A220 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-S2-A207


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977). [CrossRef]
  2. L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008). [CrossRef]
  3. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-16986 . [CrossRef] [PubMed]
  4. A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vanecek, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148–160 (2000). [CrossRef]
  5. M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: Analytical solutions,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002). [CrossRef]
  6. S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92(17), 171114 (2008). [CrossRef]
  7. T. Kume, S. Hayashi, and K. Yamamoto, “Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell by surface plasmon excitation,” Jpn. J. Appl. Phys. 32(Part 1, No. 8), 3486–3492 (1993). [CrossRef]
  8. T. Kume, S. Hayashi, H. Ohkuma, and K. Yamamoto “Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell: white light excitation of surface plasmon polaritons,” Jpn. J. Appl. Phys. 34(Part 1, No. 12A), 6448–6451 (1995). [CrossRef]
  9. M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000). [CrossRef]
  10. M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004). [CrossRef]
  11. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004). [CrossRef]
  12. K. Tvingstedt, N. Persson, O. Inganäs, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007). [CrossRef]
  13. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008). [CrossRef]
  14. S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008). [CrossRef]
  15. X. Chen, C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett. 93(12), 123302 (2008). [CrossRef]
  16. K. Kato, H. Tsuruta, T. Ebe, K. Shinbo, F. Kaneko, and T. Wakamatsu, “Enhancement of optical absorption and photocurrents in solar cells of merocyanine Langmuir–Blodgett films utilizing surface plasmon excitations,” Mater. Sci. Eng. C 22(2), 251–256 (2002). [CrossRef]
  17. C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008). [CrossRef]
  18. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008). [CrossRef]
  19. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008). [CrossRef]
  20. J. Y. Wang, F. J. Tsai, J. J. Huang, C. Y. Chen, N. Li, Y. W. Kiang, and C. C. Yang, “Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer,” Opt. Express 18(3), 2682–2694 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-2682 . [CrossRef] [PubMed]
  21. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005). [CrossRef]
  22. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006). [CrossRef]
  23. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007). [CrossRef]
  24. K. R. Catchpole and S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121(2), 315–318 (2006). [CrossRef]
  25. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007). [CrossRef]
  26. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008). [CrossRef]
  27. F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 064509 (2008). [CrossRef]
  28. P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008). [CrossRef]
  29. C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009). [CrossRef]
  30. C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008). [CrossRef]
  31. A. Kirsch and P. Monk, “A finite element method for approximating electromagnetic scattering from a conducting object,” Numer. Math. 92(3), 501–534 (2002). [CrossRef]
  32. C. Y. Chen, J. Y. Wang, F. J. Tsai, Y. C. Lu, Y. W. Kiang, and C. C. Yang, “Fabrication of sphere-like Au nanoparticles on substrate with laser irradiation and their polarized localized surface plasmon behaviors,” Opt. Express 17(16), 14186–14198 (2009), http://www.opticsinfobase.org/DirectPDFAccess/9D628AAA-BDB9-137E-CE5738553228C182_184261.pdf?da=1&id=184261&seq=0 . [CrossRef] [PubMed]
  33. J. Jin, and D. J. Riley, Finite Element Analysis of Antennas and Arrays (John Wiley & Sons, 2009)
  34. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1991).
  35. A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B 34(10), 7018–7026 (1986). [CrossRef]
  36. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited