OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S3 — Sep. 13, 2010
  • pp: A286–A292

A strong antireflective solar cell prepared by tapering silicon nanowires

Jin-Young Jung, Zhongyi Guo, Sang-Won Jee, Han-Don Um, Kwang-Tae Park, and Jung-Ho Lee  »View Author Affiliations


Optics Express, Vol. 18, Issue S3, pp. A286-A292 (2010)
http://dx.doi.org/10.1364/OE.18.00A286


View Full Text Article

Enhanced HTML    Acrobat PDF (1776 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Vertically aligned silicon nanowires (SiNWs) were cost-effectively formed on a four-inch silicon wafer using a simple room temperature approach, i.e., metal-assisted electroless etching. Tapering the NWs by post-KOH dipping achieved separation of each NW from the bunched NW, resulting in a strong enhancement of broadband optical absorption. As electroless etching time increases, the optical crossover feature was observed in the tradeoff between enhanced light trapping (by graded-refractive index during initial tapering) and deteriorated reflectance (by decreasing the areal density of NWs during later tapering). Compared to the bunched SiNWs, tapered NW solar cells demonstrated superior photovoltaic characteristics, such as a short circuit current of 17.67 mA/cm2 and a cell conversion efficiency of ~6.56% under 1.5 AM illumination.

© 2010 OSA

OCIS Codes
(310.1210) Thin films : Antireflection coatings
(350.6050) Other areas of optics : Solar energy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Photovoltaics

History
Original Manuscript: May 11, 2010
Revised Manuscript: June 23, 2010
Manuscript Accepted: June 23, 2010
Published: June 29, 2010

Citation
Jin-Young Jung, Zhongyi Guo, Sang-Won Jee, Han-Don Um, Kwang-Tae Park, and Jung-Ho Lee, "A strong antireflective solar cell prepared by tapering silicon nanowires," Opt. Express 18, A286-A292 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-S3-A286


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007). [CrossRef] [PubMed]
  2. E. C. Garnett and P. D. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008). [CrossRef] [PubMed]
  3. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009). [CrossRef] [PubMed]
  4. Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett. 35(3), 276–278 (2010). [CrossRef] [PubMed]
  5. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005). [CrossRef]
  6. K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005). [CrossRef]
  7. V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009). [CrossRef] [PubMed]
  8. L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007). [CrossRef]
  9. G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett. 8(5), 1341–1346 (2008). [CrossRef] [PubMed]
  10. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009). [CrossRef]
  11. S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coating based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009). [CrossRef]
  12. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007). [CrossRef] [PubMed]
  13. J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95, 033102 (2009). [CrossRef]
  14. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999). [CrossRef]
  15. K. Q. Peng, Y. Wu, H. Fang, X. Zhong, Y. Xu, and J. Zhu, “Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays,” Angew. Chem. Int. Ed. Engl. 44(18), 2737–2742 (2005). [CrossRef] [PubMed]
  16. X. Li, H.-S. Seo, H.-D. Um, S.-W. Jee, Y. W. Cho, B. Yoo, and J.-H. Lee, “A periodic array of silicon pillars fabricated by photoelectrochemical etching,” Electrochim. Acta 54(27), 6978–6982 (2009). [CrossRef]
  17. H.-D. Um, J.-Y. Jung, H.-S. Seo, K.-T. Park, S.-W. Jee, S. A. Moiz, and J.-H. Lee, “Silicon nanowire array solar cell prepared by metal induced electroless etching with a novel processing technology,” Jpn. J. Appl. Phys. 49(4), 04DN02 (2010). [CrossRef]
  18. P. K. Singh, R. Kumar, M. Lal, S. N. Singh, and B. K. Das, “Effectiveness of silicon in aqueous alkaline solutions,” Sol. Energy Mater. Sol. Cells 70, 103 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited