OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S3 — Sep. 13, 2010
  • pp: A308–A313

Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures

M.-Y. Chiu, C.-H. Chang, M.-A. Tsai, F.-Y. Chang, and Peichen Yu  »View Author Affiliations


Optics Express, Vol. 18, Issue S3, pp. A308-A313 (2010)
http://dx.doi.org/10.1364/OE.18.00A308


View Full Text Article

Enhanced HTML    Acrobat PDF (12572 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Sub-wavelength antireflective structures are fabricated on a silicon nitride passivation layer of a Ga0.5In0.5P/GaAs/Ge triple-junction solar cell using polystyrene nanosphere lithography followed by anisotropic etching. The fabricated structures enhance optical transmission in the ultraviolet wavelength range, compared to a conventional single-layer antireflective coating (ARC). The transmission improvement contributes to an enhanced photocurrent, which is also verified by the external quantum efficiency characterization of the fabricated solar cells. Under one-sun illumination, the short-circuit current of a cell with sub-wavelength structures is enhanced by 46.1% and 3.4% due to much improved optical transmission and current matching, compared to cells without an ARC and with a conventional SiNx ARC, respectively. Further optimizations of the sub-wavelength structures including the periodicity and etching depth are conducted by performing comprehensive calculations based on a rigorous couple-wave analysis method.

© 2010 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Photovoltaics

History
Original Manuscript: May 21, 2010
Revised Manuscript: July 16, 2010
Manuscript Accepted: July 16, 2010
Published: July 30, 2010

Citation
M.-Y. Chiu, C.-H. Chang, M.-A. Tsai, F.-Y. Chang, and Peichen Yu, "Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures," Opt. Express 18, A308-A313 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-S3-A308


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Olson, D. J. Friedman, and S. Kurtz, “High-efficiency III-V multijunction solar cells high-efficiency III-V multijunction solar cells,” in Handbook of Photovoltaic Science and Engineering, A. Luque and S. Hegedus, eds. (Academic, 2003).
  2. M. Yamaguchi, “III-V compound multi-junction solar cells: present and future,” Sol. Energy Mater. Sol. Cells 75(1-2), 261–269 (2003). [CrossRef]
  3. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 34),” Prog. Photovolt. Res. Appl. 17(5), 320–326 (2009). [CrossRef]
  4. G. Conibeer, “Third-generation photovoltaics,” Mater. Today 10(11), 42–50 (2007). [CrossRef]
  5. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006). [CrossRef] [PubMed]
  6. A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2(6), 347–353 (2007). [CrossRef]
  7. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007). [CrossRef]
  8. D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE 6545, 65450Y (2007). [CrossRef]
  9. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007). [CrossRef]
  10. C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express 16(12), 8748–8754 (2008). [CrossRef] [PubMed]
  11. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999). [CrossRef]
  12. Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008). [CrossRef]
  13. K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005). [CrossRef]
  14. E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008). [CrossRef] [PubMed]
  15. K. C. Sahoo, M. K. Lin, E. Y. Chang, Y. Y. Lu, C. C. Chen, J. H. Huang, and C. W. Chang, “Fabrication of antireflective sub-wavelength structures on silicon nitride using nano cluster mask for solar cell application,” Nanoscale Res. Lett. 4(7), 680–683 (2009). [CrossRef] [PubMed]
  16. B. Wang, W. Zhao, A. Chen, and S.-J. Chua, “Formation of nanoimprinting mould through use of nanosphere lithography,” J. Cryst. Growth 288(1), 200–204 (2006). [CrossRef]
  17. H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15(22), 14793–14803 (2007). [CrossRef] [PubMed]
  18. C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008). [CrossRef]
  19. C.-M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008). [CrossRef]
  20. C. H. Chan, C. H. Hou, S. Z. Tseng, T. J. Chen, H. T. Chien, F. L. Hsiao, C. C. Lee, Y. L. Tsai, and C.-C. Chen, “Improved output power of GaN-based light-emitting diodes grown on a nanopatterned sapphire substrate,” Appl. Phys. Lett. 95(1), 011110 (2009). [CrossRef]
  21. Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).
  22. Q. Chen, G. Hubbard, A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009). [CrossRef]
  23. K. Emery, “Measurement and characterization of solar cells and modules,” in Handbook of Photovoltaic Science and Engineering, A. Luque and S. Hegedus, eds. (Academic, 2003).
  24. D. J. Friedman, J. M. Olson, S. Ward, T. Moriarty, K. Emery, S. Kurtz, and A. Duda, “Ge concentrator cells for III-V multijunction devices,” in Proc. 28 th IEEE Photovoltaic Specialists Conference, (Academic, 2000), pp. 965–967.
  25. M. Nevière, and E. Popov, Light Propagation in Periodic Media (Marcel Dekker, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited