OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S3 — Sep. 13, 2010
  • pp: A314–A334

Design and global optimization of high-efficiency thermophotovoltaic systems

Peter Bermel, Michael Ghebrebrhan, Walker Chan, Yi Xiang Yeng, Mohammad Araghchini, Rafif Hamam, Christopher H. Marton, Klavs F. Jensen, Marin Soljačić, John D. Joannopoulos, Steven G. Johnson, and Ivan Celanovic  »View Author Affiliations

Optics Express, Vol. 18, Issue S3, pp. A314-A334 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (3207 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Despite their great promise, small experimental thermophotovoltaic (TPV) systems at 1000 K generally exhibit extremely low power conversion efficiencies (approximately 1%), due to heat losses such as thermal emission of undesirable mid-wavelength infrared radiation. Photonic crystals (PhC) have the potential to strongly suppress such losses. However, PhC-based designs present a set of non-convex optimization problems requiring efficient objective function evaluation and global optimization algorithms. Both are applied to two example systems: improved micro-TPV generators and solar thermal TPV systems. Micro-TPV reactors experience up to a 27-fold increase in their efficiency and power output; solar thermal TPV systems see an even greater 45-fold increase in their efficiency (exceeding the Shockley–Quiesser limit for a single-junction photovoltaic cell).

© 2010 Optical Society of America

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(230.5298) Optical devices : Photonic crystals

ToC Category:

Original Manuscript: May 14, 2010
Revised Manuscript: July 15, 2010
Manuscript Accepted: July 16, 2010
Published: August 2, 2010

Peter Bermel, Michael Ghebrebrhan, Walker Chan, Yi Xiang Yeng, Mohammad Araghchini, Rafif Hamam, Christopher H. Marton, Klavs F. Jensen, Marin Soljačić, John D. Joannopoulos, Steven G. Johnson, and Ivan Celanovic, "Design and global optimization of high-efficiency thermophotovoltaic systems," Opt. Express 18, A314-A334 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. H. Kolm, “Solar-battery power source,” Tech. Rep., MIT Lincoln Laboratory, “Quarterly Progress Report,” Group 35, 13 (1956).
  2. B. Wedlock, “Thermo-photo-voltaic conversion,” Proc. IEEE 51, 694–698 (1963). [CrossRef]
  3. R. Black, P. Baldasaro, and G. Charache, “Thermophotovoltaics - development status and parametric considerations for power applications,” in International Conference on Thermoelectrics, 18, pp. 639–644 (1999).
  4. F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of 1D Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005). [CrossRef]
  5. H. Xue, W. Yang, S. Chou, C. Shu, and Z. Li, “Microthermophotovoltaics power system for portable MEMS devices,” Nanoscale Microscale Thermophys. Eng. 9, 85–97 (2005). [CrossRef]
  6. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton, Princeton, NJ, 2008).
  7. A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47 (2000).
  8. J. M. Gee, J. B. Moreno, S.-Y. Lin, and J. G. Fleming, “Selective emitters using photonic crystals for thermophotovoltaic energy conversion,” in Twenty-ninth IEEE Photovolt. Spec. Conf. (2002). [CrossRef]
  9. H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82, 1685–1687 (2003). [CrossRef]
  10. U. Ortabasi, and B. Bovard, “Rugate technology for thermophotovoltaic applications: a new approach to near perfect filter performance,” AIP Conf. Proc. 653, 249–258 (2003). [CrossRef]
  11. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005). [CrossRef]
  12. D. L. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A 74, 064901 (2006). [CrossRef]
  13. I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008). [CrossRef]
  14. T. D. Rahmlow, D. M. DePoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” AIP Conf. Proc. 890, 59–67 (2007). [CrossRef]
  15. S. John, and R. Wang, “Metallic photonic band-gap filament architectures for optimized incandescent lighting,” Phys. Rev. A 78, 043809 (2008). [CrossRef]
  16. J. Gee, “Optically enhanced absorption in thin silicon layers using photonic crystals,” in Twenty-Ninth IEEE Photovolt. Spec. Conf., pp. 150–153 (2002). [CrossRef]
  17. M. Ghebrebrhan, P. Bermel, Y. Avniel, J. D. Joannopoulos, and S. G. Johnson, “Global optimization of silicon photovoltaic cell front coatings,” Opt. Express 17, 7505–7518 (2009). [CrossRef] [PubMed]
  18. B. Chachuat, A. Mitsos, and P. I. Barton, “Optimal design and steady-state operation of micro power generation employing fuel cells,” Chem. Eng. Sci. 60 (2005).
  19. M. Yunt, B. Chachuat, A. Mitsos, and P. I. Barton, “Designing man-portable power generation systems for varying power demand,” Process Syst. Eng. 54, 1254 (2008).
  20. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [CrossRef]
  21. D. Whittaker, and I. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999). [CrossRef]
  22. P. Bienstman, “Rigorous and efficient modelling of wavelength scale photonic components,” Ph.D. thesis, University of Ghent, Belgium (2001).
  23. A. Taflove, and S. C. Hagness, Computational Electrodynamics, 2nd ed. (Artech House, Norwood, MA, 2000).
  24. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  25. C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998). [CrossRef]
  26. J. Zhao, and M. Green, “Optimized Antireflection Coatings for High-Efficiency Silicon Solar Cells,” IEEE Trans. Electron. Dev. 38, 1925 (1991). [CrossRef]
  27. G. Rybicki, and A. Lightman, Radiative processes in astrophysics (John Wiley and Sons, 1979).
  28. S. Kucherenko, and Y. Sytsko, “Application of deterministic low-discrepancy sequences in global optimization,” Comput. Optim. Appl. 30, 297–318 (2005). [CrossRef]
  29. M. Powell, Advances in Optimization and Numerical Analysis (Kluwer Academic, Dordrecht, Holland, 1994).
  30. J. M. Gablonsky, and C. T. Kelley, “A locally-biased form of the DIRECT algorithm,” J. Glob. Optim. 21(1), 27–37 (2001). [CrossRef]
  31. R. C. Pilawa-Podgurski, N. A. Pallo, W. R. Chan, D. J. Perreault, and I. L. Celanovic, “Low-power maximum power point tracker with digital control for thermophotovoltaic generators,” 25th IEEE Applied Power Electronics Conference, 961–967 (2010).
  32. C. Miesse, R. Masel, C. Jensen, M. Shannon, and M. Short, “Submillimeter-scale combustion,” AIChE J. 50, 3206–3214 (2004). [CrossRef]
  33. S. Deshmukh, and D. Vlachos, “A reduced mechanism for methane and one-step rate expressions for fuel-lean catalytic combustion of small alkanes on noble metals,” Combust. Flame 149, 366–383 (2007). [CrossRef]
  34. B. Blackwell, “Design, fabrication, and characterization of a micro fuel processor,” Ph.D. thesis, Massachusetts Institute of Technology (2008).
  35. C. A. Wang, H. Choi, S. Ransom, G. Charache, L. Danielson, and D. DePoy, “High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices,” Appl. Phys. Lett. 75, 1305–1307 (1999). [CrossRef]
  36. M. W. Dashiell, J. F. Beausang, H. Ehsani, G. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. T. Jr, P. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W . Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L . Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53, 2879–2891 (2006). [CrossRef]
  37. S. Sze, Physics of Semiconductor Devices (Wiley and Sons, New York, 1981).
  38. W. Chan, R. Huang, C. A. Wang, J. Kassakian, J. D. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94, 509–514 (2010). [CrossRef]
  39. P. Wilkinson, “Photonic Bloch oscillations and Wannier-Stark ladders in exponentially chirped Bragg gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(056), 616 (2002). [CrossRef]
  40. C. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51, 4494–4500 (1980). [CrossRef]
  41. B. G. Bovard, “Rugate filter theory: an overview,” Appl. Opt. 32, 5427–5442 (1993). [CrossRef] [PubMed]
  42. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  43. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999). [CrossRef]
  44. M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” (2010), to be submitted, Phys. Rev. A.
  45. W. Spirkl, and H. Ries, “Solar thermophotovoltaics: an assessment,” J. Appl. Phys. 57, 4409–4414 (1985). [CrossRef]
  46. N. Harder, and P. Wurfel, “Theoretical limits of thermophotovoltaicsolar energy conversion,” Semicond. Sci. Technol. 18, S151 (2003). [CrossRef]
  47. A. Luque, “Solar Thermophotovoltaics: Combining Solar Thermal and Photovoltaics,” AIP Conf. Proc. 890, 3–16 (2007). [CrossRef]
  48. A. Datas, C. Algora, V. Corregidor, D. Martin, A. Bett, F. Dimroth, and J. Fernandez, “Optimization of Germanium Cell Arrays in Tungsten Emitter-based Solar TPV Systems,” AIP Conf. Proc. 890, 227–237 (2007). [CrossRef]
  49. E. Rephaeli, and S. Fan, “Absorber and emitter for solar thermophotovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17, 15,145–15,159 (2009). [CrossRef]
  50. ASTMG173–03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 degree Tilted Surface (ASTM International, West Conshohocken, Pennsylvania, 2005). [PubMed]
  51. T. Sathiaraj, R. Thangarj, A. Sharbaty, M. Bhatnagar, and O. Agnihotri, “Ni-Al2O3 selective cermet coatings for photochemical conversion up to 500? C,” Thin Solid Films 190, 241 (1990). [CrossRef]
  52. Q.-C. Zhang, “High efficiency Al-N cermet solar coatings with double cermet layer film structures,” J. Phys. D Appl. Phys. 32, 1938–1944 (1999). [CrossRef]
  53. C. Kennedy, “Review of mid- to high-temperature solar selective absorber materials,” Tech. Rep. TP-520–31267, National Renewable Energy Laboratory (2002).
  54. N. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17, 22800–22812 (2009). [CrossRef]
  55. N. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective absorbers using sub-wavelength gratings,” Opt. Express 18, 5525–5540 (2010). [CrossRef] [PubMed]
  56. Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967). [CrossRef]
  57. C. Grein, and S. John, “Polaronic band tails in disordered solids: combined effects of static randomness and electron-phonon interactions,” Phys. Rev. B 39, 1140 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited