OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S3 — Sep. 13, 2010
  • pp: A357–A365

Effects of bifunctional linker on the performance of P3HT/CdSe quantum dot-linker-ZnO nanocolumn photovoltaic device

Tsung-Wei Zeng, I-Shuo Liu, Fang-Chi Hsu, Kuo-Tung Huang, Hsuieh-Chung Liao, and Wei-Fang Su  »View Author Affiliations

Optics Express, Vol. 18, Issue S3, pp. A357-A365 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1897 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the effects of bifunctional linker on the photovoltaic properties of P3HT/CdSe quantum dot-linker-ZnO nanocolumn heterostructure. The CdSe quantum dots are bound on the surface of ZnO nanocolumns through either aliphatic linker of 3-aminopropyl trimethoxysilane(APS) or aromatic linker of p-aminophenyl trimethoxysilane(APhS) using simple solution process. As compared to CdSe bound by aliphatic linker(APS), while CdSe is bound by aromatic linker(APhS), more than one fold increase of short circuit current density (JSC) of the device obtained under irradiance, which is attributed to a more efficient charge transfer dynamics at interface. In addition, the ZnO-APhS-CdSe/P3HT devices possess about 4.8 folds in power conversion efficiency as compared to ZnO/P3HT device as the results of reduction in shunt loss and interfacial recombination.

© 2010 OSA

OCIS Codes
(000.0000) General : General
(000.2700) General : General science

ToC Category:

Original Manuscript: June 16, 2010
Revised Manuscript: July 27, 2010
Manuscript Accepted: August 2, 2010
Published: August 6, 2010

Tsung-Wei Zeng, Shuo Liu, Fang-Chi Hsu, Kuo-Tung Huang, Hsuieh-Chung Liao, and Wei-Fang Su, "Effects of bifunctional linker on the performance of P3HT/CdSe quantum dot-linker-ZnO nanocolumn photovoltaic device," Opt. Express 18, A357-A365 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005). [CrossRef]
  2. S.-H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.-S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009). [CrossRef]
  3. B. Park and M. Y. Han, “Photovoltaic characteristics of polymer solar cells fabricated by pre-metered coating process,” Opt. Express 17(16), 13830–13840 (2009). [CrossRef] [PubMed]
  4. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science 295(5564), 2425–2427 (2002). [CrossRef] [PubMed]
  5. W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516, 9516, 9516 (2005). [CrossRef]
  6. Y.-Y. Lin, T.-H. Chu, S.-S. Li, C.-H. Chuang, C.-H. Chang, W.-F. Su, C.-P. Chang, M.-W. Chu, and C.-W. Chen, “Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells,” J. Am. Chem. Soc. 131(10), 3644–3649 (2009). [CrossRef] [PubMed]
  7. E. D. Spoerke, M. T. Lloyd, E. M. McCready, D. C. Olson, Y.-J. Lee, and J. W. P. Hsu, “Improved performance of poly(3-hexylthiophene)/zinc oxide hybrid photovoltaics modified with interfacial nanocrystalline cadmium sulfide,” Appl. Phys. Lett. 95(21), 213506 (2009). [CrossRef]
  8. A. M. Peiro, P. Ravirajan, K. Govender, D. S. Boyle, P. O'Brien, D. D. C. Bradley, J. Nelson, and J. R. Durrant, “Hybrid Polymer/Metal Oxide Solar Cells Based on ZnO Columnar Structures,” J. Mater. Chem. 16, 2088–2096 (2006). [CrossRef]
  9. K. Takanezawa, K. Hirota, Q. S. Wei, K. Tajima, and K. Hashimoto, “Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices,” J. Phys. Chem. C 111(19), 7218–7223 (2007). [CrossRef]
  10. D. C. Olson, J. Pirisa, R. T. Collins, S. E. Shaheen, and D. S. Ginley, “Hybrid photovoltaic devices of polymer and ZnO nanofiber composites,” Thin Solid Films 496(1), 26–29 (2006). [CrossRef]
  11. T. C. Monson, M. T. Lloyd, D. C. Olson, Y.-J. Lee, and J. W. P. Hsu, “Photocurrent Enhancement in Polythiophene- and Alkanethiol-Modified ZnO Solar Cells,” Adv. Mater. 20(24), 4755–4759 (2008). [CrossRef]
  12. D. C. Olson, Y.-J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, and J. W. P. Hsu, “Effect of Processing on the Photovoltage of ZnO/Poly(3-hexylthiophene) Solar Cells,” J. Phys. Chem. C 112(26), 9544–9547 (2008). [CrossRef]
  13. P. Ravirajan, A. M. Peiró, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, and J. J. Nelson, “Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer,” J. Phys. Chem. B 110(15), 7635–7639 (2006). [CrossRef] [PubMed]
  14. Y.-Y. Lin, Y.-Y. Lee, L. Chang, J.-J. Wu, and C.-W. Chen, “The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells,” Appl. Phys. Lett. 94(6), 063308 (2009). [CrossRef]
  15. L. E. Greene, M. Law, B. Yuhas, and P. Yang, “ZnO-TiO2 core-shell nanorod/P3HT solar cells,” J. Phys. Chem. C 111(50), 18451–18456 (2007). [CrossRef]
  16. P. Atienzar, T. Ishwara, B. N. Illy, M. P. Ryan, B. C. O’Regan, J. R. Durrant, and J. Nelson, “Control of photocurrent generation in polymer/ZnO nanorod solar cells by using a solution-processed TiO2 overlayer,” J. Phys. Chem. Lett. 1(4), 708–713 (2010). [CrossRef]
  17. H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel, and M. K. Nazeeruddin, “Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process,” Nano Lett. 9(12), 4221–4227 (2009). [CrossRef] [PubMed]
  18. E. M. Barea, M. Shalom, S. Giménez, I. Hod, I. Mora-Seró, A. Zaban, and J. Bisquert, “Design of injection and recombination in quantum dot sensitized solar cells,” J. Am. Chem. Soc. 132(19), 6834–6839 (2010). [CrossRef] [PubMed]
  19. I. Mora-Seró, S. Giménez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gómez, and J. Bisquert, “Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode,” Nanotechnology 19(42), 424007 (2008). [CrossRef] [PubMed]
  20. K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007). [CrossRef] [PubMed]
  21. Y.-Y. Lin, C.-W. Chen, J. Chang, T.-Y. Lin, I.-S. Liu, and W.-F. Su, “Exciton dissociation and migration in enhanced order conjugated polymer/nanoparticle hybrid materials,” Nanotechnology 17(5), 1260–1263 (2006). [CrossRef]
  22. D. C. Olson, S. E. Shaheen, R. T. Collins, and D. S. Ginley, “The effect of atmosphere and ZnO morphology on the performance of hybrid poly(3-hexylthiophene)/ZnO nanofiber photovoltaic devices,” J. Phys. Chem. C 111(44), 16670–16678 (2007). [CrossRef]
  23. J. Y. Kim and F. E. Osterloh, “ZnO-CdSe nanoparticle clusters as directional photoemitters with tunable wavelength,” J. Am. Chem. Soc. 127(29), 10152–10153 (2005). [CrossRef] [PubMed]
  24. I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18(6), 675–682 (2008). [CrossRef]
  25. G. Friesen, M. E. Ozsar, and E. D. Dunlop, “Impedance model for CdTe solar cells exhibiting constant phase element behaviour,” Thin Solid Films 361–362(1-2), 303–308 (2000). [CrossRef]
  26. M. Nanu, J. Schoonman, and A. Goossens, “Inorganic nanocomposites of n- and p-type semiconductors: a new type of three dimensional solar cells,” Adv. Mater. 16(5), 453–456 (2004). [CrossRef]
  27. R. O'Hayre, M. Nanu, J. Schoonman, and A. Goossens, “A parametric study of TiO2/CuInS2 nanocomposite solar cells: how cell thickness, buffer layer thickness, and TiO2 particle size affect performance,” Nanotechnology 18(5), 055702 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited