OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S3 — Sep. 13, 2010
  • pp: A444–A450

Structural templating of multiple polycrystalline layers in organic photovoltaic cells

Brian E. Lassiter, Richard R. Lunt, C. Kyle Renshaw, and Stephen R. Forrest  »View Author Affiliations


Optics Express, Vol. 18, Issue S3, pp. A444-A450 (2010)
http://dx.doi.org/10.1364/OE.18.00A444


View Full Text Article

Enhanced HTML    Acrobat PDF (4627 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that organic photovoltaic cell performance is influenced by changes in the crystalline orientation of composite layer structures. A 1.5 nm thick self-organized, polycrystalline template layer of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) orients subsequently deposited layers of a diindenoperylene exciton blocking layer, and the donor, copper phthalocyanine (CuPc). Control over the crystalline orientation of the CuPc leads to changes in its frontier energy levels, absorption coefficient, and surface morphology, resulting in an increase of power conversion efficiency at 1 sun from 1.42 ± 0.04% to 2.19 ± 0.05% for a planar heterojunction and from 1.89 ± 0.05% to 2.49 ± 0.03% for a planar-mixed heterojunction.

© 2010 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.4890) Materials : Organic materials

ToC Category:
Photovoltaics

History
Original Manuscript: June 28, 2010
Revised Manuscript: August 27, 2010
Manuscript Accepted: August 27, 2010
Published: September 1, 2010

Virtual Issues
Focus Issue: Thin-Film Photovoltaic Materials and Devices (2010) Optics Express

Citation
Brian E. Lassiter, Richard R. Lunt, C. Kyle Renshaw, and Stephen R. Forrest, "Structural templating of multiple polycrystalline layers in organic photovoltaic cells," Opt. Express 18, A444-A450 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-S3-A444


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004). [CrossRef] [PubMed]
  2. B. P. Rand, D. P. Burk, and S. R. Forrest, “Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells,” Phys. Rev. B 75(11), 115327 (2007). [CrossRef]
  3. R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, “Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching,” J. Appl. Phys. 105(5), 053711 (2009). [CrossRef]
  4. N. Li and S. R. Forrest, “Tilted bulk heterojunction organic photovoltaic cells grown by oblique angle deposition,” Appl. Phys. Lett. 95(12), 123309 (2009). [CrossRef]
  5. G. D. Wei, S. Y. Wang, K. Renshaw, M. E. Thompson, and S. R. Forrest, “Solution-processed squaraine bulk heterojunction photovoltaic cells,” ACS Nano 4(4), 1927–1934 (2010). [CrossRef] [PubMed]
  6. R. R. Lunt, J. B. Benziger, and S. R. Forrest, “Relationship between Crystalline Order and Exciton Diffusion Length in Molecular Organic Semiconductors,” Adv. Mater. 22, 1233–1236 (2010). [CrossRef] [PubMed]
  7. A. J. Lovinger, S. R. Forrest, M. L. Kaplan, P. H. Schmidt, and T. Venkatesan, “Structural and morphological investigation of the development of electrical-conductivity in ion-irradiated thin-films of an organic material,” J. Appl. Phys. 55(2), 476–482 (1984). [CrossRef]
  8. T. J. Schuerlein and N. R. Armstrong, “Formation and characterization of epitaxial phthalocyanine and perylene monolayers and bilayers on Cu(100) - low-energy-electron diffraction and thermal-desporption mass-spectrometry studies,” J. Vac. Sci. Technol. A 12, 1992–1997 (1994). [CrossRef]
  9. K. V. Chauhan, P. Sullivan, J. L. Yang, and T. S. Jones, “Efficient Organic Photovoltaic Cells through Structural Modification of Chloroaluminum Phthalocyanine/Fullerene Heterojunctions,” J. Phys. Chem. C 114(7), 3304–3308 (2010). [CrossRef]
  10. P. Sullivan, T. S. Jones, A. J. Ferguson, and S. Heutz, “Structural templating as a route to improved photovoltaic performance in copper phthalocyanine/fullerene (C-60) heterojunctions,” Appl. Phys. Lett. 91(23), 233114 (2007). [CrossRef]
  11. B. Yu, L. Z. Huang, H. B. Wang, and D. H. Yan, “Efficient organic solar cells using a high-quality crystalline thin film as a donor layer,” Adv. Mater. 22(9), 1017–1020 (2010). [PubMed]
  12. S. Heutz, R. Cloots, and T. S. Jones, “Structural templating effects in molecular heterostructures grown by organic molecular-beam deposition,” Appl. Phys. Lett. 77(24), 3938–3940 (2000). [CrossRef]
  13. T. Sakurai, R. Fukasawa, K. Saito, and K. Akimoto, “Control of molecular orientation of organic p-i-n structures by using molecular templating effect at heterointerfaces,” Org. Electron. 8(6), 702–708 (2007). [CrossRef]
  14. T. Sakurai, S. Kawai, R. Fukasawa, J. Shibata, and K. Akimoto, “Influence of 3,4,9,10-perylene tetracarboxylic dianhydride intermediate layer on molecular orientation of phthalocyanine,” Jpn. J. Appl. Phys. 44, 1982–1986 (2005). [CrossRef]
  15. P. Peumans, V. Bulovic, and S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,” Appl. Phys. Lett. 76(19), 2650–2652 (2000). [CrossRef]
  16. F. Yang, K. Sun, and S. R. Forrest, “Efficient solar cells using all-organic nanocrystalline networks,” Adv. Mater. 19, 4166- + (2007).
  17. S. R. Forrest, “Ultrathin organic films grown by organic molecular beam deposition and related techniques,” Chem. Rev. 97(6), 1793–1896 (1997). [CrossRef]
  18. American society for testing and materials Standards Nos. E1021, E948, and E973.
  19. XRD data on ITO substrates was similar, but Si is shown here due to the lower noise floor.
  20. A. C. Durr, B. Nickel, V. Shan-Fia, U. Taffner, and H. Dosch, “Observation of competing modes in the growth of diindenoperylene on SiO2,” Thin Solid Films 503(1-2), 127–132 (2006). [CrossRef]
  21. W. Chen, D. C. Qi, Y. L. Huang, H. Huang, Y. Z. Wang, S. Chen, X. Y. Gao, and A. T. S. Wee, “Molecular Orientation Dependent Energy Level Alignment at Organic-Organic Heterojunction Interfaces,” J. Phys. Chem. C 113(29), 12832–12839 (2009). [CrossRef]
  22. J. Danziger, J. P. Dodelet, P. Lee, K. W. Nebesny, and N. R. Armstrong, “Heterojunctions formed from phthalocyanine and perylene thin-films - photoelectrochemical characterization,” Chem. Mater. 3(5), 821–829 (1991). [CrossRef]
  23. R. F. Bailey-Salzman, B. P. Rand, and S. R. Forrest, “Near-infrared sensitive small molecule organic photovoltaic cells based on chloroaluminum phthalocyanine,” Appl. Phys. Lett. 91(1), 013508 (2007). [CrossRef]
  24. J. G. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “4.2% efficient organic photovoltaic cells with low series resistances,” Appl. Phys. Lett. 84(16), 3013–3015 (2004). [CrossRef]
  25. N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest, submitted.
  26. M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, “Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices,” J. Am. Chem. Soc. 131(26), 9281–9286 (2009). [CrossRef] [PubMed]
  27. J. G. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, “A hybrid planar-mixed molecular heterojunction photovoltaic cell,” Adv. Mater. 17, 66–71 (2005). [CrossRef]
  28. L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited