OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S4 — Nov. 8, 2010
  • pp: A522–A527

Simple approach for enhancement of light harvesting efficiency of dye-sensitized solar cells by polymeric mirror

Jun Young Lee, Seungwoo Lee, Jung-Ki Park, Yongseok Jun, Young-Gi Lee, Kwang Man Kim, Jin Ho Yun, and Kuk Young Cho  »View Author Affiliations


Optics Express, Vol. 18, Issue S4, pp. A522-A527 (2010)
http://dx.doi.org/10.1364/OE.18.00A522


View Full Text Article

Enhanced HTML    Acrobat PDF (1263 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A Polymeric mirror from 1D photonic crystal exhibiting full specular reflection is applied on the exterior of the counter electrode of a dye-sensitized solar cells (DSSCs). Reflection of exiting light from the cell allows for the reuse of the light and thereby significantly increases the efficiency of the DSSCs (from 8.07% to 8.85%). Furthermore, it is also found to be effective even with incorporation of an internal scattering layer, which is widely used within a TiO2 anode layer for enhancing light trapping in DSSCs (from 9.17% to 9.53%).

© 2010 OSA

OCIS Codes
(160.5470) Materials : Polymers
(350.6050) Other areas of optics : Solar energy

ToC Category:
Photovoltaics

History
Original Manuscript: August 16, 2010
Revised Manuscript: September 14, 2010
Manuscript Accepted: September 14, 2010
Published: September 24, 2010

Citation
Jun Young Lee, Seungwoo Lee, Jung-Ki Park, Yongseok Jun, Young-Gi Lee, Kwang Man Kim, Jin Ho Yun, and Kuk Young Cho, "Simple approach for enhancement of light harvesting efficiency of dye-sensitized solar cells by polymeric mirror," Opt. Express 18, A522-A527 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-S4-A522


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991). [CrossRef]
  2. X. Fan, F. Wang, Z. Chu, L. Chen, C. Zhang, and D. Zou, “Conductive mesh based flexible dye-sensitized solar cells,” Appl. Phys. Lett. 90(7), 073501 (2007). [CrossRef]
  3. M. Ikegami, J. Suzuki, K. Teshima, M. Kawaraya, and T. Miyasaka, “Improvement in durability of flexible plastic dye-sensitized solar cell modules,” Sol. Energy Mater. Sol. Cells 93(6-7), 836–839 (2009). [CrossRef]
  4. Y. H. Luo, D. M. Li, and Q. B. Meng, “Towards optimization of materials for dye-sensitized solar cells,” Adv. Mater. 21(45), 4647–4651 (2009). [CrossRef]
  5. Y. Tachibana, K. Hara, K. Sayama, and H. Arakawa, “Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells,” Chem. Mater. 14(6), 2527–2535 (2002). [CrossRef]
  6. K. A. Arpin, A. Mihi, H. T. Johnson, A. J. Baca, J. A. Rogers, J. A. Lewis, and P. V. Braun, “Multidimensional architectures for functional optical devices,” Adv. Mater. 22(10), 1084–1101 (2010). [CrossRef] [PubMed]
  7. A. Mihi, F. J. López-Alcaraz, and H. Miguez, “Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers,” Appl. Phys. Lett. 88(19), 193110 (2006). [CrossRef]
  8. S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21(7), 764–770 (2009). [CrossRef]
  9. G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010). [CrossRef]
  10. Y. Zhang, J. Wang, Y. Zhao, J. Zhai, L. Jiang, Y. Song, and D. Zhu, “Photonic crystal concentrator for efficient output of dye-sensitized solar cells,” J. Mater. Chem. 18(23), 2650–2652 (2008). [CrossRef]
  11. M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000). [CrossRef] [PubMed]
  12. S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002). [CrossRef] [PubMed]
  13. M. Janecek and W. W. Moses, “Optical reflectance measurements for commonly used reflectors,” IEEE Trans. Nucl. Sci. 55(4), 2432–2437 (2008). [CrossRef]
  14. K. Shin, Y. Jun, J. H. Moon, and J. H. Park, “Observation of positive effects of freestanding scattering film in dye-sensitized solar cells,” ACS Appl Mater Interfaces 2(1), 288–291 (2010). [CrossRef] [PubMed]
  15. J. Y. Lee, B. Bhattacharya, D. W. Kim, and J. K. Park, “Poly(ethylene oxide)/poly(dimethylsiloxane) blend solid polymer electrolyte and its dye-sensitized solar cell applications,” J. Phys. Chem. C 112(32), 12576–12582 (2008). [CrossRef]
  16. B. Bhattacharya, J. Y. Lee, J. Geng, H. T. Jung, and J. K. Park, “Effect of cation size on solid polymer electrolyte based dye-sensitized solar cells,” Langmuir 25(5), 3276–3281 (2009). [CrossRef] [PubMed]
  17. Y. Jun, J. H. Son, D. Sohn, and M. G. Kang, “A module of a TiO2 nanocrystalline dye-sensitized solar cell with effective dimensions,” J. Photochem. Photobiol. A 200(2-3), 314–317 (2008). [CrossRef]
  18. A. B. F. Martinson, T. W. Hamann, M. J. Pellin, and J. T. Hupp, “New architectures for dye-sensitized solar cells,” Chemistry 14(15), 4458–4467 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited