OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S4 — Nov. 8, 2010
  • pp: A568–A574

Wire textured, multi-crystalline Si solar cells created using self-assembled masks

Kejia (Albert) Wang, Oki Gunawan, Naim Moumen, George Tulevski, Hisham Mohamed, Babak Fallahazad, Emanuel Tutuc, and Supratik Guha  »View Author Affiliations


Optics Express, Vol. 18, Issue S4, pp. A568-A574 (2010)
http://dx.doi.org/10.1364/OE.18.00A568


View Full Text Article

Enhanced HTML    Acrobat PDF (2940 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed an inexpensive and scalable method to create wire textures on multi-crystalline Si solar cell surfaces for enhanced light trapping. The wires are created by reactive ion etching, using a monolayer high self-assembled array of polymer microspheres as an etch mask. Chemical functionalization of the microspheres and the Si surface allows the mask to be assembled by simple dispensing, without spin or squeegee based techniques. Surface reflectivities of the resulting wire textured multi-crystalline solar cells were comparable to that of KOH etched single crystal Si (100). Electrically, the solar cells exhibited a 20% gain in the short circuit current compared to planar multicrystalline Si control devices, and a relative increase of 7-16% in the “pseudo” efficiencies when the series resistance contributions are extracted out.

© 2010 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(350.6050) Other areas of optics : Solar energy

ToC Category:
Photovoltaics

History
Original Manuscript: May 25, 2010
Revised Manuscript: July 29, 2010
Manuscript Accepted: July 29, 2010
Published: October 15, 2010

Citation
Kejia (Albert) Wang, Oki Gunawan, Naim Moumen, George Tulevski, Hisham Mohamed, Babak Fallahazad, Emanuel Tutuc, and Supratik Guha, "Wire textured, multi-crystalline Si solar cells created using self-assembled masks," Opt. Express 18, A568-A574 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-S4-A568


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Goetzberger, C. Hebling, and H.-W. Schock, “Photovoltaic materials, history, status and outlook,” Mater. Sci. Eng. Rep. 40(1), 1–46 (2003). [CrossRef]
  2. A. Hübner, C. Hampe, and A. G. Aberle, “A simple fabrication process for 20% efficient silicon solar cells,” Sol. Energy Mater. Sol. Cells 46(1), 67–77 (1997). [CrossRef]
  3. P. Panek, M. Lipinski, and J. Dutkiewicz, “Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells,” J. Mater. Sci. 40(6), 1459–1463 (2005). [CrossRef]
  4. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005). [CrossRef]
  5. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010). [CrossRef] [PubMed]
  6. R. Ludemann, B. M. Damiani, and A. Rohatgi, “Novel processing of solar cells with porous silicon texturing,” Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE.
  7. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009). [CrossRef] [PubMed]
  8. F. L. Yap and Y. Zhang, “Protein micropatterning using surfaces modified by self-assembled polystyrene microspheres,” Langmuir 21(12), 5233–5236 (2005). [CrossRef] [PubMed]
  9. O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, and S. Guha, “High Performance Wire-Array Silicon Solar Cells,” Prog. Photovolt. Res. Appl. (accepted) (to be published soon.).
  10. R. A. Sinton, and A. Cuevas, “A quasi-steady-state open circuit voltage method for solar cell characterization,” 16th European Photovoltaic Solar Energy Conference. 2000: Glasgow, UK. 1152–1155.
  11. D. Pysch, A. Mette, and S. W. Glunz, “A review and comparison of different methods to determine the series resistance of solar cells,” Sol. Energy Mater. Sol. Cells 91(18), 1698–1706 (2007). [CrossRef]
  12. M. J. Kerr, A. Cuevas, and R. A. Sinton, “Generalized analysis of quasi-steady-state and transient decay open circuit voltage measurements,” J. Appl. Phys. 91(1), 399–404 (2002). [CrossRef]
  13. M. A. Green, Solar Cells: Operating Principles, Technology and System Applications. Prentice-Hall: New Jersey, 1982, Chapter 3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited