OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S4 — Nov. 8, 2010
  • pp: A584–A593

Electro – optical simulation of diffraction in solar cells

Marius Peters, Marc Rüdiger, Benedikt Bläsi, and Werner Platzer  »View Author Affiliations

Optics Express, Vol. 18, Issue S4, pp. A584-A593 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1151 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simulation method is presented and evaluated for simulating two- and three dimensional wave optical effects in crystalline silicon solar cells. Due to a thickness in the 100 µm range, optical properties of these solar cells typically are simulated, primarily through the use of ray-tracing. Recently, diffractive elements such as gratings or photonic crystals have been investigated for their application in crystalline silicon solar cells, making it necessary to consider two- and three dimensional wave optical effects. The presented approach couples a rigorous wave optical simulation to a semiconductor device simulation. In a first step, characteristic parameters, simulated for a reference setup using the electro-optical method and the standard procedure are compared. Occurring differences provide a measure to quantify the errors of the electro-optical method. These errors are below 0.4% relative. In a second step the electro-optical method is used to simulate a crystalline silicon solar cell with a back side diffractive grating. It is found that the grating enhances to short circuit current density jSC of the solar cell by more than 1 mA/cm2.

© 2010 OSA

OCIS Codes
(000.2700) General : General science

ToC Category:
Diffraction and Gratings

Original Manuscript: August 12, 2010
Revised Manuscript: September 21, 2010
Manuscript Accepted: September 21, 2010
Published: October 15, 2010

Marius Peters, Marc Rüdiger, Benedikt Bläsi, and Werner Platzer, "Electro – optical simulation of diffraction in solar cells," Opt. Express 18, A584-A593 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Goetzberger, J. C. Goldschmidt, M. Peters, and P. Löper, “Light trapping, a new approach to spectrum splitting,” Sol. Energy Mater. Sol. Cells 92(12), 1570–1578 (2008). [CrossRef]
  2. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  3. C. Ulbrich, S. Fahr, J. Üpping, M. Peters, T. Kirchartz, C. Rockstuhl, R. Wehrspohn, A. Gombert, F. Lederer, and U. Rau, “Directional selectivity and ultra-light-trapping in solar cells,” Phys. Stat. Solidi A 205(12), 2831–2843 (2008). [CrossRef]
  4. M. Green, “Lambertian Light Trapping in Textured Solar Cells and Light-Emitting Diodes: Analytical Solutions,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002). [CrossRef]
  5. K. Tvingstedt, S. Dal Zilio, O. Inganäs, and M. Tormen, “Trapping light with micro lenses in thin film organic photovoltaic cells,” Opt. Express 16(26), 21608–21615 (2008). [CrossRef] [PubMed]
  6. A. Macleod, Thin Film Optical Filters 3rd Ed (Institute of Physics Publishing, Bristol and Philadelphia, 2001)
  7. P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983). [CrossRef]
  8. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt. 34(14), 2476–2482 (1995). [CrossRef] [PubMed]
  9. O. Isabella, A. Campa, M. C. Heijna, W. Soppe, R. van Erwen, R. H. Franken, H. Borg, and M. Zeman, “Diffraction Gratings for Light Trapping in Thin-Film Silicon Solar Cells” in Proceedings of the 23rd European Photovoltaic Solar energy Conference, (Valencia, Spain, 2008), pp. 2320 – 2324.
  10. M. Niggemann, B. Bläsi, A. Gombert, A. Hinsch, H. Hoppe, P. Lalanne, D. Meissner, and V. Wittwer, “Trapping Light in Organic Plastic Solar Cells with Integrated Diffraction Grating,” presented at the 17th European Photovoltaic Solar energy Conference, Munich, Germany, 22 – 26 oct. 2001.
  11. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007). [CrossRef] [PubMed]
  12. P. Voisin, M. Peters, H. Hauser, C. Helgert, E. B. Kley, T. Pertsch, B. Bläsi, M. Hermle, and S. W. Glunz, “Nanostructured Back Side Silicon Solar Cells,” in Proceedings of the 24th European European Photovoltaic Solar energy Conference, (Hamburg., Germany, 2009), pp. 1997 - 2000.
  13. S. Janz, M. Peters, D. Suwito, M. Hermle, and S. W. Glunz, “Photonic crystals as rear-side diffusers and reflectors for high efficiency silicon solar cells,” in Proceedings of the 24th European European Photovoltaic Solar energy Conference, (Hamburg., Germany, 2009), pp. 1529 - 1533.
  14. C. B. Burcardt, “Diffraction of a Plane Wave at a Sinusoidally Stratified Dielectric Grating,” J. Opt. Soc. Am. 56(11), 1502–1509 (1966). [CrossRef]
  15. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  16. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995). [CrossRef]
  17. P. Lalanne and M. P. Jurek, “Computation of the near-field pattern with the coupled-wave method for TM polarization,” J. Mod. Opt. 45, 1357–1374 (1998). [CrossRef]
  18. P. Kailuweit, R. Kellenbenz, M. Peters, and F. Dimroth, “Optical modelling of nanostructured III-V multi-junction solar cells”, Proceedings of SPIE Photonics West (page unknown) (2010)
  19. G. Létay, “Modellierung von III-V Solarzellen”, Dissertation, University of Constance (2003) http://www.ub.uni-konstanz.de/kops/volltexte/2003/1118/
  20. M. Peters, “Photonic Concepts for Solar Cells,” Dissertation at the University of Freiburg (2009). http://www.freidok.uni-freiburg.de/volltexte/6768/
  21. J. H. Poynting, “On the Transfer of Energy in the Electromagnetic Field,” Phil. Trans. 175(0), 343–361 (1884). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited