OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 1 — Jan. 3, 2011
  • pp: 118–127

Integrated spectrometer design with application to multiphoton microscopy

Eric V. Chandler, Charles G. Durfee, and Jeffrey A. Squier  »View Author Affiliations

Optics Express, Vol. 19, Issue 1, pp. 118-127 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2062 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a prism-based spectrometer integrated into a multifocal, multiphoton microscope. The multifocal configuration facilitates interrogation of samples under different excitation conditions. Notably, the image plane of the microscope and the image plane of the spectrometer are coincident eliminating the need for an intermediate image plane containing an entrance slit. An EM-CCD detector provides sufficient gain for spectral interrogation of single-emitters. We employ this spectrometer to observe spectral shifts in the two-photon excitation fluorescence emission of single CdSe nanodots as a function of excitation polarization.

© 2011 OSA

OCIS Codes
(300.6190) Spectroscopy : Spectrometers
(300.6410) Spectroscopy : Spectroscopy, multiphoton
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: November 8, 2010
Revised Manuscript: December 10, 2010
Manuscript Accepted: December 13, 2010
Published: December 21, 2010

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Eric V. Chandler, Charles G. Durfee, and Jeffrey A. Squier, "Integrated spectrometer design with application to multiphoton microscopy," Opt. Express 19, 118-127 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003). [CrossRef] [PubMed]
  2. G. Patterson, R. N. Day, and D. Piston, “Fluorescent protein spectra,” J. Cell Sci. 114(5), 837–838 (2000).
  3. B. Barstow, N. Ando, C. U. Kim, and S. M. Gruner, “Alteration of citrine structure by hydrostatic pressure explains the accompanying spectral shift,” Proc. Natl. Acad. Sci. U.S.A. 105(36), 13362–13366 (2008). [CrossRef] [PubMed]
  4. L. Banyai, M. Lindberg, and S. W. Koch, “Two-photon absorption and third-order nonlinearities in GaAs quantum dots,” Opt. Lett. 13(3), 212–214 (1988). [CrossRef] [PubMed]
  5. C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites,” J. Am. Chem. Soc. 155, 8706–8715 (1993). [CrossRef]
  6. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997). [CrossRef]
  7. R. D. Schaller, M. A. Petruska, and V. I. Klimov, “Tunable Near-Infrared Optical Gain and Amplified Spontaneous Emission Using PbSe Nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003). [CrossRef]
  8. H. R. Morris, C. C. Hoyt, and P. J. Treado, “Imaging Spectrometers for Fluorescence and Raman Microscopy: Acousto-Optic and Liquid Crystal Tunable Filters,” Appl. Spec. 48(7), 857–866 (1994). [CrossRef]
  9. M. T. E. Golay, “Multi-Slit Spectroscopy,” J. Opt. Soc. Am. A. 39(6), 437–444 (1949). [CrossRef]
  10. R. J. Bell, Introductory Fourier Transform Spectroscopy. London: Academic Press, 1972.
  11. J. E. Chamberlain, The principles of Interferometric Spectroscopy. New York:Wiley, 1979.
  12. Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc. 182(2), 133–140 (1996). [CrossRef]
  13. Y. Garini, M. Macville, S. Manoir, R. A. Buckwald, M. Lavi, N. Katzir, D. Wine, I. Bar-Am, E. Schröck, D. Cabib, and T. Ried, “Spectral karyotyping,” Bioimaging 4(2), 65–72 (1996). [CrossRef]
  14. E. S. Wachman, W. Niu, and D. L. Farkas, “Imaging acousto-optic tunable filter with 0.35-micrometer spatial resolution,” Appl. Opt. 35(25), 5220–5226 (1996). [CrossRef] [PubMed]
  15. E. S. Wachman, W. Niu, and D. L. Farkas, “AOTF Microscope for Imaging with Increased Speed and Spectral Versatility,” Biophys. J. 73(3), 1215–1222 (1997). [CrossRef] [PubMed]
  16. D. W. Warren, and J. A. Hackwell, “Compact prism spectrograph suitable for broadband spectral surveys with array detectors,” U.S. Patent No. 5127728 (1992).
  17. E. Chandler, E. Hoover, J. Field, K. Sheetz, W. Amir, R. Carriles, S. Ding, and J. Squier, “High-resolution mosaic imaging with multifocal, multiphoton photon-counting microscopy,” Appl. Opt. 48(11), 2067–2077 (2009). [CrossRef] [PubMed]
  18. A. Shavel, N. Gaponik, and A. Eychmuller, “Covalent linking of CdTe nanocrystals to amino-functionalized surfaces,” ChemPhysChem 6, 449–451 (2005). [CrossRef] [PubMed]
  19. K. T. Early, P. K. Sudeep, T. Emrick, and M. D. Barnes, “Polarization-driven Stark shifts in quantum dot luminescence from single CdSe/oligo-PPV nanoparticles,” Nano Lett. 10(5), 1754–1758 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited