OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 1 — Jan. 3, 2011
  • pp: 128–140

Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings

Ali Naqavi, Karin Söderström, Franz-Josef Haug, Vincent Paeder, Toralf Scharf, Hans Peter Herzig, and Christophe Ballif  »View Author Affiliations


Optics Express, Vol. 19, Issue 1, pp. 128-140 (2011)
http://dx.doi.org/10.1364/OE.19.000128


View Full Text Article

Acrobat PDF (1316 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Despite the progress in the engineering of structures to enhance photocurrent in thin film solar cells, there are few comprehensive studies which provide general and intuitive insight into the problem of light trapping. Also, lack of theoretical propositions which are consistent with fabrication is an issue to be improved. We investigate a real thin film solar cell with almost conformal layers grown on a 1D grating metallic back-reflector both experimentally and theoretically. Photocurrent increase is observed as an outcome of guided mode excitation in both theory and experiment by obtaining the external quantum efficiency of the cell for different angles of incidence and in both polarization directions. Finally, the effect of geometrical parameters on the short circuit current density of the device is investigated by considering different substrate shapes that are compatible with solar cell fabrication. Based on our simulations, among the investigated shapes, triangular gratings with a very sharp slope in one side, so called sawtooth gratings, are the most promising 1D gratings for optimal light trapping.

© 2011 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Solar Energy

History
Original Manuscript: November 9, 2010
Revised Manuscript: December 10, 2010
Manuscript Accepted: December 10, 2010
Published: December 21, 2010

Citation
Ali Naqavi, Karin Söderström, Franz-Josef Haug, Vincent Paeder, Toralf Scharf, Hans Peter Herzig, and Christophe Ballif, "Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings," Opt. Express 19, 128-140 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-1-128


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. Eisele, C. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89(12), 7722 (2001). [CrossRef]
  2. N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films 451, 397–401 (2004). [CrossRef]
  3. K. Söderström, F. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in nip thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010). [CrossRef]
  4. O. Isabella, F. Moll, J. Krč, and M. Zeman, “Modulated surface textures using zinc oxide films for solar cells applications,” Phys. Stat. Sol. A 207, 642–646 (2010).
  5. H. Iida, N. Shiba, T. Mishuku, H. Karasawa, A. Ito, M. Yamanaka, and Y. Hayashi, “Efficiency of the a-Si: H solar cell and grain size of SnO transparent conductive film,” IEEE Electron Device Lett. 4(5), 157–159 (1983). [CrossRef]
  6. T. Söderström, F. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009). [CrossRef]
  7. C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18(S3), A335–A341 (2010). [CrossRef]
  8. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982). [CrossRef]
  9. P. Sheng, A. Bloch, and R. Stepleman, “Wavelength selective absorption enhancement in thin film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983). [CrossRef]
  10. 10. Z. Yu, A. Raman, and S. Fan, "Fundamental Limit of Nanophotonic Light-Trapping in Solar Cells," in Solar Energy Cells, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDSWB1.
  11. A. Taflove, and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005) (2010).
  12. G. Bao, Z. Chen, and H. Wu, “Adaptive finite-element method for diffraction gratings,” J. Opt. Soc. Am. A 22(6), 1106–1114 (2005). [CrossRef]
  13. M. Nevière, and E. Popov, Light propagation in periodic media: differential theory and design (Marcel Dekker, Inc., 2003).
  14. J. Chandezon, M. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72(7), 839–846 (1982). [CrossRef]
  15. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13(5), 1024 (1996). [CrossRef]
  16. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870–1876 (1996). [CrossRef]
  17. M. Moharam and T. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72(10), 1385–1392 (1982). [CrossRef]
  18. C. Carniglia, “Scalar scattering theory for multilayer optical coatings,” Opt. Eng. 18, 104–115 (1979).
  19. A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “ “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148 (2000). [CrossRef]
  20. D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006). [CrossRef]
  21. R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009). [CrossRef]
  22. N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, L. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Dev. 54(8), 1926–1933 (2007). [CrossRef]
  23. F. Llopis and I. Tobias, “The role of rear surface in thin silicon solar cells,” Sol. Energy Mater. Sol. Cells 87(1-4), 481–492 (2005). [CrossRef]
  24. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17(16), 14312–14321 (2009). [CrossRef]
  25. C. Heine and R. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt. 34(14), 2476–2482 (1995). [CrossRef]
  26. K. Söderström, J. Escarré, F. J. Haug, S. Perregaux, and C. Ballif, “UV-Nano-Imprint Lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photo. Res. Appl. (2010).
  27. T. Söderström, F. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008). [CrossRef]
  28. N. Chateau and J. Hugonin, “Algorithm for the rigorous coupled-wave analysis of grating diffraction,” J. Opt. Soc. Am. A 11(4), 1321–1331 (1994). [CrossRef]
  29. R. H. Morf, “Exponentially convergent and numerically efficient solution of Maxwell's equations for lamellar gratings,” J. Opt. Soc. Am. A 12(5), 1043–1043 (1995). [CrossRef]
  30. V. Ferry, M. Verschuuren, H. Li, E. Verhagen, R. Walters, R. Schropp, H. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2), A237–A245 (2010). [CrossRef]
  31. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  32. A. Naqavi, V. Paeder, T. Scharf, K. Söderström, F. Haug, C. Ballif, and H. Herzig, “An RCWA Analysis of Solar Cell Back Reflectors: Comparison between Modelling and Experiment,” in Optical Nanostructures for Photovoltaics, OSA Technical Digest (CD) (Optical Society of America, 2010)
  33. J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells 85, 1–11 (2005).
  34. H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl. 14(1), 13–24 (2006). [CrossRef]
  35. C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007). [CrossRef]
  36. S. Zanotto, M. Liscidini, and L. Andreani, “Efficiency Enhancement in Thin-Film Silicon Solar Cells with a Photonic Pattern,” in Optical Nanostructures for Photovoltaics, OSA Technical Digest (CD), (Optical Society of America, 2010)
  37. S. Zanotto, M. Liscidini, and L. Andreani, “Absorption Enhancement and Light Trapping Regimes in Thin-Film Silicon Solar Cells with a Photonic Pattern,” in 2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), (Optical Society of America, 2010)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited