OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 1 — Jan. 3, 2011
  • pp: 162–167

Application of metal-clad antiresonant reflecting hollow waveguides to tunable terahertz notch filter

Ja-Yu Lu, Hao-Zai Chen, Chih-Hsien Lai, Hung-Chun Chang, Borwen You, Tze-An Liu, and Jin-Long Peng  »View Author Affiliations


Optics Express, Vol. 19, Issue 1, pp. 162-167 (2011)
http://dx.doi.org/10.1364/OE.19.000162


View Full Text Article

Enhanced HTML    Acrobat PDF (912 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel tunable terahertz notch filter is demonstrated using antiresonant reflecting hollow waveguides with movable metal layers outside dielectric claddings. Based on the Fabry-Pérot resonance of the dielectric cladding, multiple deep notches are observed in a broad THz transmission spectrum. Continuous shift of notch frequencies is for the first time experimentally observed by lateral translation of metal layers from dielectric claddings. The measured maximum frequency-tuning-range approached 60GHz, equaling to 50% of the bandwidth of every passband, and a 20dB rejection notch-depth with a linewidth as narrow as 6GHz at frequency of around 0.2THz was also achieved. Numerical simulations match the measurements and verify the spectral-tuning mechanism.

© 2010 OSA

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(230.7390) Optical devices : Waveguides, planar
(300.6495) Spectroscopy : Spectroscopy, teraherz
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

History
Original Manuscript: October 26, 2010
Revised Manuscript: December 9, 2010
Manuscript Accepted: December 10, 2010
Published: December 22, 2010

Citation
Ja-Yu Lu, Hao-Zai Chen, Chih-Hsien Lai, Hung-Chun Chang, Borwen You, Tze-An Liu, and Jin-Long Peng, "Application of metal-clad antiresonant reflecting hollow waveguides to tunable terahertz notch filter," Opt. Express 19, 162-167 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-1-162


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009). [CrossRef]
  2. W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008). [CrossRef] [PubMed]
  3. H. Zhang, P. Guo, P. Chen, S. Chang, and J. Yuan, “Liquid-crystal-filled photonic crystal for terahertz switch and filter,” J. Opt. Soc. Am. B 26(1), 101–106 (2009). [CrossRef]
  4. R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010). [CrossRef]
  5. T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555 (2004). [CrossRef]
  6. J. Han, A. Lakhtakia, Z. Tian, X. Lu, and W. Zhang, “Magnetic and magnetothermal tunabilities of subwavelength-hole arrays in a semiconductor sheet,” Opt. Lett. 34(9), 1465–1467 (2009). [CrossRef] [PubMed]
  7. T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004). [CrossRef]
  8. N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12(8), 1540–1550 (2004). [CrossRef] [PubMed]
  9. C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009). [CrossRef] [PubMed]
  10. B. S. Phillips, P. Measor, Y. Zhao, H. Schmidt, and A. R. Hawkins, “Optofluidic notch filter integration by lift-off of thin films,” Opt. Express 18(5), 4790–4795 (2010). [CrossRef] [PubMed]
  11. W. F. Sun, X. K. Wang, and Y. Zhang, “Measurement of refractive index for high reflectance materials with terahertz time domain reflection spectroscopy,” Chin. Phys. Lett. 26(11), 114210 (2009). [CrossRef]
  12. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006). [CrossRef] [PubMed]
  13. C.-P. Yu and H.-C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express 12(25), 6165–6177 (2004). [CrossRef] [PubMed]
  14. U. Trutschel, M. Croningolomb, G. Fogarty, F. Lederer, and M. Abraham, “Analysis of metal-clad anti-resonant reflecting optical waveguide for polarizer applications,” IEEE Photon. Technol. Lett. 5(3), 336–339 (1993). [CrossRef]
  15. K. H. Rollke and W. Sohler, “Metal-clad waveguide as a cutoff polarizer for integrated optics,” IEEE J. Quantum Electron. 13(4), 141–145 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited