OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 1 — Jan. 3, 2011
  • pp: 206–217

Nonlinear propagation in silicon-based plasmonic waveguides from the standpoint of applications

Ivan D. Rukhlenko, Malin Premaratne, and Govind P. Agrawal  »View Author Affiliations

Optics Express, Vol. 19, Issue 1, pp. 206-217 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (942 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Silicon-based plasmonic waveguides can be used to simultaneously transmit electrical signals and guide optical energy with deep subwavelength localization, thus providing us with a well needed connecting link between contemporary nanoelectronics and silicon photonics. In this paper, we examine the possibility of employing the large third-order nonlinearity of silicon to create active and passive photonic devices with silicon-based plasmonic waveguides. We unambiguously demonstrate that the relatively weak dependance of the Kerr effect, two-photon absorption (TPA), and stimulated Raman scattering on optical intensity, prevents them from being useful in μm-long plasmonic waveguides. On the other hand, the TPA-initiated free-carrier effects of absorption and dispersion are much more vigorous, and have strong potential for a variety of practical applications. Our work aims to guide research efforts towards the most promising nonlinear optical phenomena in the thriving new field of silicon-based plasmonics.

© 2011 Optical Society of America

OCIS Codes
(040.6040) Detectors : Silicon
(130.0250) Integrated optics : Optoelectronics
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Nonlinear Optics

Original Manuscript: October 21, 2010
Revised Manuscript: December 13, 2010
Manuscript Accepted: December 17, 2010
Published: December 22, 2010

Ivan D. Rukhlenko, Malin Premaratne, and Govind P. Agrawal, "Nonlinear propagation in silicon-based plasmonic waveguides from the standpoint of applications," Opt. Express 19, 206-217 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. T. Reed, and A. P. Knights, Silicon Photonics: An Introduction (Wiley, Hoboken, 2004). [CrossRef]
  2. B. Jalali, O. Boyraz, V. Raghunathan, D. Dimitropoulos, and P. Koonath, “Silicon Raman amplifiers, lasers and their applications,” in Active and Passive Optical Components for WDM Communications V, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, Eds., Proc. SPIE 6014, 21–26 (2005).
  3. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Pannicia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005). [CrossRef] [PubMed]
  4. R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Lossless optical modulation in a silicon waveguide using stimulated Raman scattering,” Opt. Express 13, 1716–1723 (2005). [CrossRef] [PubMed]
  5. T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. V. Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265, 171–174 (2006). [CrossRef]
  6. B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 412–421 (2006). [CrossRef]
  7. R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006). [CrossRef]
  8. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 ?m femtosecond pulses,” Opt. Express 14, 8336–8346 (2006). [CrossRef] [PubMed]
  9. J. Y. Lee, L. Yin, G. P. Agrawal, and P. M. Fauchet, “Ultrafast optical switching based on nonlinear polarization rotation in silicon waveguides,” Opt. Express 18, 11514–11523 (2010). [CrossRef] [PubMed]
  10. L. Tang, S. Latif, and D. A. B. Miller, “Plasmonic device in silicon CMOS,” Electron. Lett. 45, 706 (2009). [CrossRef]
  11. J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–306 (2010). [CrossRef]
  12. S. M. Sederberg, V. Van, and A. Y. Elezzabi, “Silicon-based plasmonic waveguides interfaced to silicon photonic platform,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThE4.
  13. J. N. Caspers, N. Rotenberg, and H. M. van Driel, “Ultrafast silicon-based active plasmonics at telecom wavelengths,” Opt. Express 18, 19761–19769 (2010). [CrossRef] [PubMed]
  14. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010). [CrossRef]
  15. M. L. Brongersma, R. Zia, and J. A. Schuller, “Plasmonics—the missing link between nanoelectronics and microphotonics,” Appl. Phys., A Mater. Sci. Process. 89, 221–223 (2007). [CrossRef]
  16. S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, 2007).
  17. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef] [PubMed]
  18. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  19. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007). [CrossRef]
  20. U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420(1–10) (2001). [CrossRef]
  21. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16, 1385–1392 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited